IN THIS ISSUE:

2017-01

Occultation of UCAC3 113-399867 by Chariklo

Beyond Jupiter (10199) Chariklo

Grazing Occultations of Stars by the Moon in 2017 OCCULTATIC

ONAL

+ INT

Dear reader,

astronomy is one of the oldest scientific human beings were engaged in. In these old times men and woman were looking at the night sky, undisturbed by nothing more than perhaps a fire place. Seeing the beauty and miracles of the stars and their movements. And they started to describe and explain, what they saw. It was at the beginning more religion than science, and it was used to control and dominate their clans.

Today, everybody can take part in this science, but we have to be careful, it can and will be used to control people. Not so much in astronomy, but in other subjects.

In scientific work we observe facts, we try to grab a little of reality, we generate models, how nature can be described. We should not be megalomaniac towards explaining all of nature at the first moment. Looking at the beauty of the universe, we still feel very suppliant and also happy, that we are able to get a glimpse of its nature.

Science is not about accumulation of data and putting them in the closet. We have to work with our data, publish them and the most important to discuss it with others everywhere. We have put a lot of work in the past to gain data, making predictions, building sophisticated instruments and setting up communications about it. But now is the time to do more in terms of interpreting, what we see, draw conclusions and contribute to improve the knowledge about the universe. The real work will start right now, not stop with incremental science just gathering occultations by occultations and lightcurves by lightcurves. Many of us do this work not for money, this makes us very independent. And we should not forget... we do this because we want to fun!

JOA 2017-1 · \$ 5.00 · \$ 6.25 OTHER · (ISSN 0737-6766)

In this issue:

1	Occultation of UCAC3 113-399867 by Chariklo, August 8 th 2016 Hans-Joachim Bode3
	Beyond Jupiter, (10199) Chariklo Mike Kretlow
	Grazing Occultations of Stars by the Moon in 2017
	Eberhard Riedel
	Impressum

Writing articles for JOA:

The rules below should be regarded while writing an article; using them will greatly facilitate the production and layout of ON!

If your article does not conform to these rules, please correct it.

There are 3 different possibilities for submitting articles:

- pdf-articles (must be editable these can be converted)
- unformatted Word *.doc-files containing pictures/graphs or their names (marked red: <figure_01>) at the desired position(s)
- *.txt-files must contain at the desired position the name of each graph/picture

The simplest way to write an article is just use Word as usual and after you have finished writing it, delete all your format-commands by selecting within the push-down-list "STYLE" (in general it's to the left of FONT & FONTSIZE) the command "CLEAR FORMATTING". After having done this you can insert your pictures/graphs or mark the positions of them (marked red: <figure_01>) within the text.

- txt-files: Details, that should be regarded
- Format-commands are forbidden
- In case of pictures, mark them within the text like <picture001> where they should be positioned

Name of the author should be written in the 2nd line of the article, right after the title of the article; a contact e-mail address (even if just of the national coordinator) should be given after the author's name.

IMPORTANT: Use only the end-of-line command (press ENTER) if it's really necessary (new paragraph, etc.) and not when you see it's the end of the line!

Sending articles to JOA:

Each country / state has a coordinator who will translate your										
article to English – if necessary.										
n case there is no one (new country) please send a mail to the										
editorial staff at: info@occultations.info										
Africa:	NN									
America:	Steven Preston stevepr@acm.org									
Australia / NZ	Brian Loaderbrian.loader@clear.net.nz									
Europe:	Wolfgang Beisker wbeisker@iota-es.de									
England:	Alex Pratt alexander.pratt@btinternet.com									
Finland:	Matti Suhonen suhonen@ursa.fi									
Germany:	Wolfgang Beisker wbeisker@iota-es.de									
Greece:	Vagelis Tsamisvtsamis@aegean.gr									
Iran:	Atila Poroiotamiddleeast@yahoo.com									
Italy:	C. Sigismondicostantino.sigismondi@gmail.com									
Japan:	Mitsuru Somamitsuru.soma@gmail.com									
Netherland:	Harrie Rutten h.g.j.rutten@home.nl									
Poland:	Marek Zawilski Marek.Zawilski@P.lodz.pl									
Spain:	Carles Schnabelcschnabel@foradorbita.com									

Occultation of UCAC3 113-399867 by Chariklo, August 8th 2016 Preliminary Results

Hans-Joachim Bode · IOTA/ES

The rings of Chariklo were discovered in 2013. Thereafter different attempts were made in 2014, 2015 and 2016 in southern Africa to find out more details about its structure and composition. Duffard et. al. /1/ could explain temporal variations of water ice signatures in the spectroscopic data by the ring system. They showed that in contrast to the particles in the rings, which contain about 20% water ice on their surface, the surface of Chariklo is nearly ice free.

Fortunately there are 2 more predicted possible Chariklo occultations that will take place in southern Africa, which can be used to derive more physical data of this object.

It would be good if several teams at different stations would monitor these events on April 9 at 2h26 UT and June 22 at 8h19 UT. GAIA-Data had been used to compute these predictions, with an accuracy being much better now.

Ring passage at 19:57:18 & 19:57:51 (mid-occultation: 19:57:34.5), marked with red arrows (1, 4). Main body from 19:57:27 to 19:57:42 (mid-occultation: 19:57:34.5) Modified Disappearance (2) ~ 19:57:27.5, Reappearance (3) ~ 19:57:41.3

© Diane Berard, Observatoire de Paris

Although positive recordings of the past were taken into account to the 2015-preditions and several stations were positioned around the centreline on August 4, 2015 no occultation could be registered. The reason is still uncertain – maybe the "occulted" star was a close double.

In 2016 the situation was different concerning the observer-scan. Only one observatory was able to monitor that event on the 8th of August in 2016: the C14 of Sonja Itting-Enke, near Windhoek at coordinates latitude S 22° 41.9150' and longitude E 017° 06.5400' at an altitude of 1.945 m. The C14 was equipped with a focal reducer, to bring the focal ratio down to 1:7. The telescope was equipped with an ASI 120MM camera from ZW-Optical with a CMOS chip. The limiting magnitude was 17m3 with an exposure time of 1 second. No filter was used.

It was a pity that no more observatories were able to record this positive occultation – so no more additional chords can be included...

You can see the 2 ring-passages and the dis- and reappearance of the occulted main body on the light curve. Have a close look at the immersion (19:57:10) and emersion (19:57:33) the star's light changed during the exposure-time of 1 second (figure-mark 2 & 3).

*1) Astronomy & Astrophysics manuscript no. chariklo08, July 25, 2014: Photometric and spectroscopic evidence for a dense ring system around Centaur Chariklo

/1/ Photometric and spectroscopic evidence for a dense ring system around Centaur Chariklo.
 R. Duffard, N. Pinilla-Alonso, J.L. Ortiz, A. Alvarez-Candal, B. Sicardy, P. Santos-Sanz, N. Morales, C. Colazo, E. Fernández-Valenzuela, and F. Braga-Ribas. A&A 568, A79 (2014)

Credits: Rio Team & B. Sicardy

Beyond Jupiter The world of distant minor planets

Since the degradation of Pluto in 2006 by the IAU, the planet Neptune marks the end of the zone of planets. Beyond Neptune, the world of icy large and small bodies, with and without an atmosphere (called Trans Neptunian Objects or TNOs) starts. This zone between Jupiter and Neptune is also host to mysterious objects, namely the Centaurs and the Neptune Trojans. All of these groups are summarized as "distant minor planets". Occultation observers investigate these members of our solar system, without ever using a spacecraft. The sheer number of these minor planets is huge. As of December 2016, the Minor Planet Center listed 689 Centaurs and 1789 TNOs.

In the coming years, JOA wants to portray a member of this world in every issue; needless to say not all of them will get an article here (KG).

In this issue:

(10199) Chariklo

Mike Kretlow IOTA/ES, mike@kretlow.de

DISCOVERY:

Chariklo was discovered on February 15, 1997 by James V. Scotti within the Spacewatch Project at Kitt Peak Observatory. Later it was found on precovery images back to 1988. Chariklo is named after the nymph Chariclo, the wife of Chiron and the daughter of Apollo. The object belongs to the socalled Centaurs and with a mean diameter of about 250 km it is currently the largest known member of this population.

Centaurs are (by definition of the Minor Planet Center, MPC) objects with a perihelion distance beyond the orbit of Jupiter (q > 5.2 AU) and a semi-major axis less than that of Neptune (a < 30.1 AU)¹. More than 390 Centaurs are in the JPL's small-body database, while the MPC lists Centaurs and Scattered-Disk objects together, with currently 690 objects. The origin of the Centaurs remained mysterious for a long time but meanwhile we believe, that these objects come from the Kuiper belt, a reservoir of cometary nuclei beyond the orbits of Neptune and Pluto. Having been perturbed inward by Neptune or Uranus (or both), they currently are on dynamically unstable orbits. That means that a Centaur will either be

Figure 1: Artist's impression of the rings surrounding the Centaur Chariklo. Credit: Lucie Maquet.

ejected from the Solar System, will impact on a planet or the Sun, or will become a short-period comet due to the gravitational influence of the giant planets. This implies that the population of Centaurs is being continually replenished from the Kuiper belt.

Chariklo is not only the largest Centaur known to date but also the first asteroid-like sized object to have rings.

Orbital and physical parameters

Chariklo is orbiting the Sun in an eccentric (e = 0.172) and inclined ($i = 23.4^{\circ}$) orbit with a perihelion distance of about 13 AU. The last perihelion was in January 2004, the next one will be in the year 2066. Fornasier et al. [1] found a sideral rotation period of 7.004 \pm 0.0036 h and a geometric albedo of the system of only 0.042, which is comparable to the albedo of fresh asphalt. The SMASS spectral type is given as D.

Discovery of the rings

Chariklo's ring system was discovered during the occultation of UCAC4 248-108672 on June 3, 2013, which was observed from various sites in South America ([3] and Fig. 2). This was the first successful occultation by Chariklo ever observed. Two narrow secondary events before and after the main event were detected (Fig. 3) and the best (though surprising) explanation for this detection is the presence of two rings: an inner, denser ring (2013C1R) at about 390 km distance from Chariklo's center and a more tenuous ring (2013C2R), 15 km outside the inner ring. They are separated by a gap of about 9 km. Further occultations

1 The JPL has a similar, though slightly different definition and there are further definitions, for example respecting their transitional orbit state between TNOs and (short-period) comets.

observed on April 29, 2014 and August 08, 2016 ([2]) confirmed the rings around Chariklo. The ring system can explain the dimming of Chariklo's system (i.e. variation of the absolute magnitude H by about 0.8 mag) between 1997 and 2008, and also the gradual disappearance of ice and other absorption features in its spectrum over the same period [3, 4]. Before the discovery of the ring system during that occultation, this brightness variation was attributed to (unexplained) cometary activities and / or spin-axis orientation effects. The origin of the rings is unknown, but they are likely to be remnants of a debris disk. This disk could have been formed by any kind of impact or collision scenario on Chariklo or between pre-existing moons. Another possible source could be released material from the surface due to cometary activity or rotational disruption. Collisions between ring particles would cause the ring to widen substantially, and the Poynting-Robertson drag would cause the ring particles to fall onto the central body within a few million years, requiring either an active source of ring particles or dynamical confinement by small (kilometer-sized) embedded or shepherd moons yet to be discovered.

Observing circumstances and occultation predictions

Chariklo is currently on the southern sky (declination $\delta \approx -31^{\circ}$) and moving with less than 1 arc minute per day towards the north. The apparent magnitude stays around V $\approx 18.5-19.5$ in the upcoming years. The next opposition will be in July, 2017.

Additional occultation observations could be very helpful to improve the ring orbital elements and / or to derive Chariklo's shape and orientation (wrt the rings). The knowledge of the shape has impact on the understanding of the dynamics of the rings. As long as the shape cannot be derived by other means (for example by lightcurve inversion),

the occultation technique will be most promising.

Using a special ephemeris [5] provided by Josselin Desmars (IMCCE, Paris) a search for star occultations has been done for this year. The star catalog HSOY [6] (a catalog based on PPMXL and Gaia DR1) was used, limited to brighter than 15 Gmag stars. Essentially three events can be considered for this year. Two favorable occultations in April and June will be observable from Southern Africa (Fig. 4 and 5). The third event, in November, will be observable from Australia, but the circumstances are not so favorable, because of the fainter star, the lower altitude and possible twilight interference (Fig. 6).

Figure 2: Trajectories of the star relative to Chariklo in the plane of the sky, as observed from eight sites located in Argentina, Brazil and Chile. After [3] Braga-Ribas et al. (2014).

Figure 3: Lightcurve of the occultation by the Chariklo system, taken with the Danish 1.54 m telescope (La Silla) at a data rate of almost 10 Hz. After [3] Braga-Ribas et al. (2014).

Figure 4: Occultation of 14.0 Gmag star G1SRC 6757456455517129344 (position and proper motion from HSOY catalog) by (10199) Chariklo on 2017-04-09 at $t_0 = 02:25.6$ UT. The 1-sigma prediction uncertainty is marked by the dashed line. Prediction by the author using the NIMAv10 ephemeris kindly provided by J. Desmars (IMCCE, Paris).

Figure 5: Occultation of 14.1 Gmag star G1SRC 6760223754481862656 (position and proper motion from HSOY catalog) by (10199) Chariklo on 2017-06-22 at $t_0 = 21:18.5$ UT. The 1-sigma prediction uncertainty is marked by the dashed line. Prediction by the author using the NIMAv10 ephemeris kindly provided by J. Desmars (IMCCE, Paris).

Figure 6: Occultation of 14.9 Gmag star G1SRC 6761362745448535552 (position and proper motion from HSOY catalog) by (10199) Chariklo on 2017-11-19 at $t_0 = 10:23.6$ UT. The 1-sigma prediction uncertainty is marked by the dashed line. Prediction by the author using the NIMAv10 ephemeris kindly provided by J. Desmars (IMCCE, Paris).

References

- Fornasier, S., et al. 2014. The Centaur 10199 Chariklo: investigation into rotational period, absolute magnitude, and cometary activity. Astron. Astrophys. 568, L 11, 5 pp.
- [2] Bode, H.-J. 2017. Occultation of UCAC3 113-399867 by Chariklo. Journal for Occultation Astronomy, No. 1, January-March (this issue).
- [3] Braga-Ribas, F., et al. 2014. A ring system detected around Centaur (10199) Chariklo. Nature 508, 72-75. arXiv: 1409.7259.
- [4] Ortiz, J.L. et al. 2015. Possible ring material around centaur (2060) Chiron. arXiv:1501.05911v1.

[5] Desmars, J., et al. 2015. Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations. Astron. Astrophys. 584, id. A96, 11 pp.

[6] Altmann, M., et al. 2017. Hot Stuff for One Year (HSOY) - A 580 million star proper motion catalogue derived from Gaia DR1 and PPMXL. arXiv:1701.02629v1.

Further reading

Burns, J. A. 2014. Ring in the new... Journal for Occultation Astronomy, No. 2, April-June, 21-23.

Sicardy, B., et al. 2016. Rings beyond the giant planets. arXiv: 1612.03321v1. To be published in: M. Tiscareno and C. Murray (Eds.). Planetary Ring Systems. Cambridge University Press.

Grazing Occultations of Stars by the Moon in 2017

Eberhard Riedel · IOTA/ES

2017	,		Grazing	Occu	Itations	Eu	rope 20	01	7 - <=6.	0 ma	ag. graz	ZPREP 4.04	, IOTA/ES
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.U1	r	LONG	LAT	STAR NAME	MAG1	MAG
1	Mar 15	ZC 1941	139390	4.7	94 -	S	2 20	.8	-19	50	74 l2 Vir		
2	Mar 19	ZC 2399	160046	4.9	64 -	S	0 53	.1	-9	38	24 (Sco)/Oph		
3	Mar 30	ZC 444	93232	5.9	9+	S	19 3	.9	0	66			
4	Mar 31	ZC 608	93775 \$	6.0	19+	N	22 39	.1	-19	65	179 B. Tau	6.1	8.8
5	Apr 01	ZC 741	94227 V	5.5	27+	N	18 21	.2	9	63	318 B. Tau	6.5	6.5
6	Apr 03	ZC 1072	96407 X	6.0	50+	S	20 34	.6	9	68	110 B. NP Gem	7.0	7.0
7	Apr 04	ZC 1207	97472 X	5.6	62+	N	20 11	.5	-19	53	3 Cnc	6.0	7.6
8	Apr 19	ZC 2902	163060 V	5.9	52 -	S	3 40	.6	-19	48	57 Sgr	6.8	6.8
9	Apr 28	ZC 671	93957 V	3.4	7+	S	15 38	.8	28	51	78 theta2 Tau	4.0	5.0
10	Apr 28	ZC 669	93955 V	3.8	7+	S	15 42	.5	26	45	77 theta1 Tau	4.0	7.8
11	Apr 28	ZC 692	94027 A	0.9	7+	N	18 10	.7	-19	68	87 alpha Tau (Aldebaran)	1.1	11.3
12	Apr 28	ZC 699	94043	5.8	7+	S	19 18	.9	12	61	89 Tau		
13	Apr 29	ZC 836	94649	5.7	14+	N	17 2	.9	28	37	120 Tau		
14	Apr 29	ZC 878	94858 K	5.5	16+	S	21 55	.2	1	68	130 Tau	5.6	9.0
15	May 01	ZC 1158	97120 K	5.0	35+	S	18 14	.2	11	41	74 m Gem	6.0	6.0
16	May 04	ZC 1439	98755	5.7	59+	S	1 29	.7	-19	45	18 Leo	0.7	0.7
1/	May 04	ZC 1531	99136 Y	6.0	68+	N	19 4	./	6	49	45 CX Leo	6.7	6.7
18	May 04	ZC 1547	118355 M	3.8	68+	N	21 49	.1	-19	51	47 rho Leo	4.6	4.6
19	May 17	ZC 2981	163592 M	5.1	68 -	S	3 26	.7	-19	56	10 рі Сар	5.2	8.5
20	Jun 03	20 1825	138933	5.9	73+	N	20 52	.7	17	62	74.10.) (;;;		
21	Jun 04	ZC 1941	139390	4.7	81+	S	22 45	.5	12	50	74 12 Vir	0.0	0.0
22	Jun 08	20 2291	159625 V	5.5	98+	S	2 47	8	-19	41	49 LID	6.3	0.3
23	Jun 10	20 2000	18679410	4.9	98-	5	23 44	.2	-12	61	21 Sgr	5.0	C.1
24	Jun 19	ZC 170	109715	6.0	10	IN N	1 0	0.0	10	20	33 Cel	67	67
25	Jun 21	70 609	93320 K	6.0	12-	IN N	4 0	.0 0	-10	49	170 P. Tou	0.7	0.7
20	Jun 22	70 602	93775 \$	0.0	0-	N	15 24	.9	7	50	87 olpho Tou	0.1	0.0
21	Jun 22	20 092	94027 A	0.9	4-		15 24	.1	5	00	(Aldebaran)	1.1	11.5
28	Jun 26	ZC 1337	98250	5.7	10+	N	19 53	.2	-2	41	63 omicron2 Cnc		
29	Jul 18	ZC 405	110723 V	4.3	35 -	N	0 46	.8	1	32	87 mu Cet	4.5	8.5
30	Jul 20	ZC 704	94054	4.7	15 -	S	0 12	.7	24	50	92 sigma2 Tau		
31	Jul 25	70 1 107	00007.4	0.2	6+	S	7 41	.0	-7	49	Mercury		
32	Jui 25	20 1407	90907 A	1.4	6+		9 0	0.	-19	30	(Regulus)		
33	Jul 26	ZC 1644	118804	4.0	14+	N	20 12	.1	-19	42	77 sigma Leo (Shang Ts.)		
34	Jul 27	ZC 1749	119245	6.0	22+	Ν	19 18	.4	1	40	10 Vir		
35	Aug 05	ZC 2734	187324	5.2	93+	S	1 20	.4	-19	35	29 Sgr		
36	Aug 14	ZC 491	93416	6.0	49 -	Ν	23 52	.6	-4	40	8 B. Tau		
37	Aug 15	ZC 635	93868 K	3.6	38 -	N	23 23	.0	7	45	54 gamma Tau (Hyadum I)	4.7	4.7
38	Aug 15	ZC 640	93876	5.3	38 -	S	23 32	.7	7	48	58 V696 Tau	5.3	5.3
39	Aug 16	ZC 661	93932 V	4.5	37 -	S	1 30	.2	-11	27	71 V777 Tau	4.8	6.8
40	Aug 16	ZC 671	93957 V	3.4	37 -	S	2 38	.1	3	27	78 theta2 Tau	4.0	5.0
41	Aug 16	ZC 667	93950 V	5.0	37 -	Ν	2 43	.8	-8	27	75 Tau	5.4	7.9

he following maps and tables show a selection of this year's grazing occultations of the brightest stars by the moon. For the European overview the limiting magnitude is 6.0, whereas for the different countries the limit is 7.0 mag. Some unfavorable events were omitted due to low altitude or bright lunar limb conditions.

Five more grazes of Aldebaran are on the list, but none on the dark limb at night. Two of them are daytime events and three occur on the bright lunar limb with the sun below the horizon. During the last two nighttime events (Nov. 6 and Dec. 31) the moon causes problems being close to full whereas the best bright limb observation may be possible on the morning of April 28 in southern Finland at an only 7% sunlit lunar limb right after sunset. The observation of the daytime grazes of Aldebaran needs telescopes of probably 10 inches aperture upwards and very good atmospheric conditions.

Fortunately Regulus makes up for Aldebaran: at least on Sept. 18 there will be a brilliant nighttime northern limb graze far from any sunlit features being visible in Sicily, Greece and Turkey. Studying this event in detail shows that multiple events are possible when choosing an offset to the south by 3 or 4 kilometers.

All tables and pictures of this article were created with the author's GRAZPREP-software. Further precise information on the local circumstances of all grazing occultations is provided by this software which can be downloaded and installed via <u>www.grazprep.com</u> (password: IOTA/ES) including prediction files that are needed additionally for different regions of the world. GRAZPREP assists in finding and listing individually favorable occultation events and in figuring out the best observing site in advance or even under way by graphically showing the expected apparent stellar path through the lunar limb terrain.

The main idea of the program is to easily visualize the complete list of all grazing occultation events in an area plus the com-

42	Aug 16	ZC 677	93975 X	4.8	37 -	Ν	4 3.5	-19	51	264 B. Tau	5.6	5.6
43	Aug 16	ZC 692	94027 A	0.9	36 -	N	6 49.6	-19	55	87 alpha Tau (Aldebaran)	1.1	11.3
44	Aug 17	ZC 806	94526 C	5.0	27 -	S	1 26.5	-10	49	111 Tau	5.1	8.9
45	Aug 17	ZC 836	94649	5.7	25 -	Ν	5 2.6	-19	32	120 Tau		
46	Aug 29	ZC 2399	160046	4.9	54+	N	18 58.5	-1	52	24 (Sco)/Oph		
47	Sep 10	ZC 462	93320 K	6.0	74 -	Ν	23 24.7	-19	36		6.7	6.7
48	Sep 11	ZC 608	93775 \$	6.0	63 -	Ν	23 42.4	-19	41	179 B. Tau	6.1	8.8
49	Sep 12	ZC 635	93868 K	3.6	62 -	S	5 31.3	-19	35	54 gamma Tau (Hyadum I)	4.7	4.7
50	Sep 12	ZC 669	93955 V	3.8	61 -	S	10 39.7	-19	41	77 theta1 Tau	4.0	7.8
51	Sep 12	ZC 741	94227 V	5.5	54 -	Ν	20 26.3	30	52	318 B. Tau	6.5	6.5
52	Sep 14	ZC 947	95432 A	5.2	39 -	Ν	3 21.8	-19	36	71 Ori	5.2	11.2
53	Sep 16	ZC 1236	97645 Z	5.1	19-	N	2 27.6	-8	40	16 zeta Cnc (Tegmine)	5.6	6.0
54	Sep 17	ZC 1375	98456	5.4	10 -	Ν	4 46.9	-19	49	82 pi Cnc		
55	Sep 18	ZC 1487	98967 A	1.4	5 -	N	3 26.3	7	36	32 alpha Leo (Regulus)		
56	Sep 29	ZC 2886	162964	4.9	66+	S	18 54.1	-16	40	56 f Sgr		
57	Sep 29	ZC 2902	163060 V	5.9	66+	Ν	23 8.7	-19	44	57 Sgr	6.8	6.8
58	Oct 07	ZC 405	110723 V	4.3	94 -	Ν	19 22.6	0	40	87 mu Cet	4.5	8.5
59	Oct 14	ZC 1337	98250	5.7	31 -	S	3 36.6	18	44	63 omicron2 Cnc		
60	Oct 14	ZC 1336	98247	5.2	31 -	S	3 43.0	12	63	62 omicron1 Cnc		
61	Oct 15	ZC 1466	98876 V	5.3	21 -	Ν	5 57.4	-19	62	27 nu Leo	6.0	6.0
62	Oct 22	ZC 2291	159625 V	5.5	8+	S	15 59.6	20	35	49 Lib	6.3	6.3
63	Nov 03	ZC 249	110065	4.5	98+	Ν	4 4.8	-19	44	106 nu Psc		
64	Nov 06	ZC 692	94027 A	0.9	95 -	S	2 29.4	-19	45	87 alpha Tau (Aldebaran)	1.1	11.3
65	Nov 13	ZC 1644	118804	4.0	26 -	s	1 24.0	4	51	77 sigma Leo (Shang Ts.)		
66	Nov 21	ZC 2639	186544 A	6.0	9+	Ν	15 51.5	12	42	16 Sgr	6.0	13.0
67	Nov 25	ZC 3181	164612 V	6.0	41+	Ν	20 20.3	-19	63	45 Cap	6.7	6.7
68	Nov 25	ZC 3177	164600 K	5.9	41+	Ν	20 48.8	1	32	44 Cap	6.8	6.8
69	Nov 27	ZC 3421	146612	4.9	61+	N	16 57.7	3	27	92 chi Aqr	4.9	5.1
70	Nov 30	ZC 170	109715	6.0	81+	Ν	0 27.8	-18	51	33 Cet		
71	Dec 01	ZC 405	110723 V	4.3	95+	N	15 53.8	9	40	87 mu Cet	4.5	8.5
72	Dec 04	ZC 913	95166 L	5.1	97 -	Ν	21 1.8	-8	27	64 Ori	6.3	6.3
73	Dec 07	ZC 1259	97781	5.9	83 -	N	2 25.4	-19	28	20 d1 Cnc		
74	Dec 07	ZC 1375	98456	5.4	74 -	S	23 51.9	30	62	82 pi Cnc		
75	Dec 08	ZC 1487	98967 A	1.4	64 -	S	21 37.3	12	42	32 alpha Leo (Regulus)		
76	Dec 10	ZC 1644	118804	4.0	50 -	S	8 31.9	-19	57	77 sigma Leo (Shang Ts.)		
77	Dec 11	ZC 1733	119156	5.4	41 -	Ν	1 7.3	-4	40	7 b Vir		
78	Dec 20	ZC 2886	162964	4.9	5+	Ν	17 56.3	-18	38	56 f Sgr		
79	Dec 21	ZC 2994	163626 A	5.9	9+	Ν	14 27.9	26	50	12 omicron Cap	6.1	6.6
80	Dec 28	ZC 364	110543	4.3	75+	S	18 58.6	-16	27	73 xi2 Cet		
81	Dec 31	ZC 692	94027 A	0.9	93+	S	1 19.3	-19	47	87 alpha Tau (Aldebaran)	1.1	11.3

plete line data for any selected event and (simultaneously on the same screen) both the geographic circumstances on earth and the enlarged topographic situation at the lunar limb including a fairly realistic display of the sunlit lunar portion as well as the approximate sky brightness depending on to the sun's altitude. Thus a judgment about the entire graze circumstances is easily possible at a few glances and a selection of the best events and observing locations quick and easy. Any graze line for any selected favorable offset to the predicted limit can be displayed in Google Earth.

Besides that the software assists in creating one or several individual observing stations with any center and radius, that way filtering out the most suitable local events according to a variety of personal preferences. Furthermore a report form is provided to enable sending and collecting observation data in a fixed format, thus supporting the reduction and scientific evaluation of observed contacts.

Eu

14 2017-1 JOURNAL FOR OCCULTATION ASTRONOMY

0

νe

Germany

2017	2017Grazing Occultations Germany 2017, <= 7.0 mag.											
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.UT	CUSP-A T	STAR NAME	MAG1	MAG2	
1	Apr 04	ZC 1207	97472 X	5.6	62+	N	20 49.1	2.5 D A	3 Cnc	6.0	7.6	
2	Apr 20	ZC 3022	163798	7.0	42 -	S	2 45.6	7.1 D C				
3	May 03	ZC 1413	98652	6.8	57+	S	19 24.3	1.3 B C	35 B. Leo			
4	May 04	ZC 1531	99136 Y	6.0	68+	Ν	19 4.7	1.7 D B	45 CX Leo	6.7	6.7	
5	Jun 04	ZC 1941	139390	4.7	81+	S	22 45.5	2.0 D A	74 l2 Vir			
6	Jun 10	ZC 2666	186794 M	4.9	98 -	S	23 59.5	15.4 D A	21 Sgr	5.0	7.5	
7	Jun 22	ZC 608	93775 \$	6.0	6 -	Ν	2 52.9	7.3 B C	179 B. Tau	6.1	8.8	
8	Jul 02	ZC 2020	139732 K	6.5	68+	S	22 52.7	2.8 D C	94 Vir	7.4	7.4	
9	Jul 25			0.2	6+	S	7 44.0	9.9 D A	Mercury			
10	Jul 29	ZC 1976	139548	7.0	42+	Ν	19 50.8	1.0 D C	186 G. Vir			
11	Aug 15	ZC 491	93416	6.0	49 -	Ν	0 5.2	5.0 D A	8 B. Tau			
12	Aug 15	ZC 635	93868 K	3.6	38 -	N	23 24.6	3.8 D A	54 gamma Tau (Hyadum I)	4.7	4.7	
13	Aug 15	ZC 640	93876	5.3	38 -	S	23 32.7	3.1 B C	58 V696 Tau	5.3	5.3	
14	Aug 16	ZC 659	93925 O	6.6	37 -	Ν	2 2.5	5.1 D A	70 Tau	7.0	7.3	
15	Aug 29	ZC 2399	160046	4.9	54+	N	19 11.8	2.1 D A	24 (Sco)/Oph			
16	Sep 10	X 3132	110464	6.8	83 -	N	1 50.6	10.4 D B				
17	Sep 10	ZC 462	93320 K	6.0	74 -	Ν	23 53.2	9.4 D A		6.7	6.7	
18	Sep 12	ZC 608	93775 \$	6.0	63 -	N	0 2.9	8.2 D A	179 B. Tau	6.1	8.8	
19	Sep 16	ZC 1236	97645 Z	5.1	19-	N	2 36.9	7.6 D A	16 zeta Cnc (Tegmine)	5.6	6.0	
20	Sep 29	ZC 2886	162964	4.9	66+	S	19 48.7	1.7 D A	56 f Sgr			
21	Oct 15	ZC 1449	98809	6.5	22 -	Ν	2 17.7	8.3 D A	23 Leo			
22	Nov 06	ZC 692	94027 A	0.9	95 -	S	3 12.0	12.3 B A	87 alpha Tau (Aldebaran)	1.1	11.3	
23	Nov 09	ZC 1151	97087	6.8	69 -	Ν	0 10.0	9.7 D B				
24	Nov 13	ZC 1644	118804	4.0	26 -	S	1 24.2	7.2 B C	77 sigma Leo (Shang Ts.)			
25	Dec 08	ZC 1385	98517	6.6	73-	Ν	2 4.8	3.4 D B	227 B. Cnc			
26	Dec 08	ZC 1396	98574	6.8	73 -	S	5 41.5	0.6 T B				
27	Dec 09	ZC 1522	99098	6.8	62 -	S	6 36.1	2.4 D B				

Great Britain

2017	2017 Grazing Occultations Great Britain 2017, <= 7.0 mag. GRAZPREP 4.04, IOTA/ES											
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.UT	CUSP-A T	STAR NAME	MAG1	MAG2	
1	Mar 31	ZC 608	93775 \$	6.0	19+	Ν	22 42.8	1.3 B C	179 B. Tau	6.1	8.8	
2	Apr 04	ZC 1207	97472 X	5.6	62+	Ν	20 22.7	0.1 T A	3 Cnc	6.0	7.6	
3	May 17	ZC 2981	163592 M	5.1	68 -	S	3 34.1	5.3 D A	10 pi Cap	5.2	8.5	
4	Jun 10	ZC 2666	186794 M	4.9	98 -	S	23 44.5	16.9 D C	21 Sgr	5.0	7.5	
5	Jun 21	ZC 462	93320 K	6.0	12 -	Ν	4 3.8	4.2 B C		6.7	6.7	
6	Jul 02	ZC 2020	139732 K	6.5	68+	S	22 30.1	0.1 T B	94 Vir	7.4	7.4	
7	Jul 13	ZC 3310	165147 V	6.4	86 -	Ν	3 30.2	3.8 D B	58 B. Aqr	7.2	7.2	
8	Jul 21	ZC 886	94920 X	6.8	7 -	Ν	4 8.9	1.1 B C		7.7	7.7	
9	Aug 16	ZC 672	93961 O	6.7	37 -	Ν	3 25.2	6.0 D A		7.0	7.7	
10	Aug 16	ZC 677	93975 X	4.8	37 -	Ν	4 14.0	5.2 D A	264 B. Tau	5.6	5.6	
11	Aug 16	ZC 692	94027 A	0.9	36 -	Ν	7 0.1	3.6 D A	87 alpha Tau (Aldebaran)	1.1	11.3	
12	Aug 17	ZC 806	94526 C	5.0	27 -	S	1 26.5	3.5 B C	111 Tau	5.1	8.9	
13	Aug 17	ZC 829	94617	6.8	26 -	Ν	4 38.2	5.3 D A				
14	Aug 29	ZC 2399	160046	4.9	54+	Ν	18 58.5	3.5 D B	24 (Sco)/Oph			
15	Sep 17	ZC 1371	98427 O	6.5	10 -	Ν	3 40.7	7.4 D A	81 Cnc	7.2	7.2	
16	Sep 17	ZC 1375	98456	5.4	10 -	Ν	4 49.7	7.2 D A	82 pi Cnc			
17	Sep 29	ZC 2902	163060 V	5.9	66+	Ν	23 14.8	2.9 B C	57 Sgr	6.8	6.8	
18	Nov 08	ZC 1151	97087	6.8	69 -	Ν	23 56.6	11.0 D B				
19	Nov 30	ZC 170	109715	6.0	81+	Ν	0 32.8	3.0 D A	33 Cet			
20	Dec 09	ZC 1522	99098	6.8	62 -	S	6 6.7	0.5 T B				
21	Dec 10	ZC 1644	118804	4.0	50 -	S	8 46.7	2.2 D A	77 sigma Leo (Shang Ts.)			
22	Dec 26	ZC 106	128974	6.6	55+	S	23 12.4	0.6 B C	123 B. Cet			
23	Dec 30	ZC 526	93532	6.7	86+	Ν	3 15.9	8.0 D C				

Hungary

2017	,		Grazing	Occul	tations	Hun	igary 20 ⁴	17, <= 7.0 m	ag. GRAZ	PREP 4.04	, IOTA/ES
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.UT	CUSP-A T	STAR NAME	MAG1	MAG2
1	Jun 04	ZC 1941	139390	4.7	81+	S	22 51.5	2.6 D A	74 l2 Vir		
2	Sep 14	ZC 947	95432 A	5.2	39 -	Ν	4 9.9	6.0 D A	71 Ori	5.2	11.2
3	Sep 16	ZC 1236	97645 Z	5.1	19 -	Ζ	2 38.0	7.5 D A	16 zeta Cnc (Tegmine)	5.6	6.0
4	Sep 16	X 12393	97646 X	6.2	19-	Ζ	2 38.0	7.5 D A	16 zeta2 Cnc (Companion)	6.2	9.0
5	Oct 07	ZC 405	110723 V	4.3	94 -	Ν	19 31.9	14.6 D A	87 mu Cet	4.5	8.5
6	Oct 10	ZC 871	94830	6.7	67 -	Ν	21 4.2	10.2 D C			
7	Nov 06	ZC 692	94027 A	0.9	95 -	S	3 25.5	10.6 B A	87 alpha Tau (Aldebaran)	1.1	11.3
8	Nov 13	ZC 1645	118806	6.7	26 -	Ν	1 8.4	7.0 D B			
9	Nov 24	ZC 3041	163910	6.2	31+	S	17 35.9	3.3 D A	81 B. Cap		
10	Dec 08	ZC 1385	98517	6.6	73 -	Ν	2 18.6	1.5 D B	227 B. Cnc		
11	Dec 08	ZC 1396	98574	6.8	73-	S	5 58.8	1.4 D B			

BeNeLux

2017	2017 Grazing Occultations BeNeLux 2017, <= 7.0 mag. GRAZPREP 4.04, IOTA/ES												
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.UT	CUSP-A T	STAR NAME	MAG1	MAG2		
1	May 04	ZC 1531	99136 Y	6.0	68+	Ν	19 4.7	1.7 D B	45 CX Leo	6.7	6.7		
2	Jul 25			0.2	6+	S	7 43.0	10.1 D C	Mercury				
3	Aug 16	ZC 659	93925 O	6.6	37 -	Ν	1 59.0	5.1 D A	70 Tau	7.0	7.3		
4	Aug 29	ZC 2399	160046	4.9	54+	N	19 6.1	2.7 D A	24 (Sco)/Oph				
5	Sep 10	X 3132	110464	6.8	83 -	Ν	1 45.3	10.7 D B					
6	Sep 11	ZC 608	93775 \$	6.0	63 -	Ν	23 59.3	8.2 D A	179 B. Tau	6.1	8.8		
7	Nov 13	ZC 1644	118804	4.0	26 -	S	1 24.0	7.4 B C	77 sigma Leo (Shang Ts.)				
8	Dec 08	ZC 1396	98574	6.8	73-	S	5 38.2	0.4 T B					
9	Dec 09	ZC 1522	99098	6.8	62 -	S	6 30.3	2.1 D B					

Czech Republic

2017	7		Grazing Occ	ultatio	ons Cze	ch I	Republic	2017, <= 7.	0 mag. GRAZ	2PREP 4.04	, IOTA/ES
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.UT	CUSP-A T	STAR NAME	MAG1	MAG2
1	Jun 04	ZC 1941	139390	4.7	81+	S	22 45.5	2.0 D A	74 l2 Vir		
2	Jul 02	ZC 2020	139732 K	6.5	68+	S	22 56.8	3.7 D C	94 Vir	7.4	7.4
3	Aug 15	ZC 491	93416	6.0	49 -	Ν	0 7.7	5.1 D A	8 B. Tau		
4	Aug 15	ZC 635	93868 K	3.6	38 -	Ν	23 25.8	3.9 D A	54 gamma Tau (Hyadum I)	4.7	4.7
5	Aug 15	ZC 640	93876	5.3	38 -	S	23 34.0	3.4 B C	58 V696 Tau	5.3	5.3
6	Aug 29	ZC 2399	160046	4.9	54+	Ν	19 22.1	0.9 T A	24 (Sco)/Oph		
7	Sep 11	ZC 462	93320 K	6.0	74 -	Ν	0 2.3	9.4 D A		6.7	6.7
8	Sep 29	ZC 2886	162964	4.9	66+	S	19 51.4	1.8 D A	56 f Sgr		
9	Oct 12	X 11708	97260 A	7.0	44 -	Ν	22 24.2	9.3 D C		7.9	9.6
10	Oct 15	ZC 1449	98809	6.5	22 -	N	2 20.0	7.8 D A	23 Leo		
11	Dec 08	ZC 1396	98574	6.8	73-	S	5 51.8	1.2 D B			

Italy

2017	2017 Grazing Occultations Italy 2017, <= 7.0 mag. GRAZPREP 4.04, IOTAGE												
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.UT	CUSP-A T	STAR NAME	MAG1	MAG2		
1	Apr 04	ZC 1207	97472 X	5.6	62+	Ν	20 53.9	2.9 D A	3 Cnc	6.0	7.6		
2	Apr 19	ZC 2902	163060 V	5.9	52 -	S	4 6.1	5.0 D A	57 Sgr	6.8	6.8		
3	Apr 22	ZC 3295	165079	7.0	23 -	S	3 22.0	7.5 D C	54 Aqr				
4	Apr 30	ZC 1040	96111 O	6.4	25+	S	21 54.9	0.4 T A	74 B. Gem	6.8	7.0		
5	May 01	ZC 1158	97120 K	5.0	35+	S	18 14.2	1.0 B B	74 m Gem	6.0	6.0		
6	May 04	ZC 1531	99136 Y	6.0	68+	Ν	19 15.8	2.7 D A	45 CX Leo	6.7	6.7		
7	May 20	ZC 3375	146438	6.8	38 -	S	3 38.5	2.7 D A	260 B. Aqr				
8	Jun 02	ZC 1732	119150	6.8	64+	S	23 32.2	1.9 D C					
9	Jul 25	ZC 1487	98967 A	1.4	6+	N	9 17.2	6.2 B A	32 alpha Leo (Regulus)				
10	Aug 02	ZC 2448	160231 K	6.3	79+	S	21 53.4	2.5 D B	29 Oph	7.2	7.2		
11	Aug 14	ZC 491	93416	6.0	49 -	Ν	23 57.9	4.4 D A	8 B. Tau				
12	Aug 15	ZC 635	93868 K	3.6	38 -	N	23 23.0	3.4 D A	54 gamma Tau (Hyadum I)	4.7	4.7		
13	Aug 16	ZC 661	93932 V	4.5	37 -	S	1 45.8	7.1 B B	71 V777 Tau	4.8	6.8		
14	Aug 16	ZC 667	93950 V	5.0	37 -	Ν	3 12.4	8.3 D A	75 Tau	5.4	7.9		
15	Aug 17	ZC 823	94586 T	6.7	26 -	N	3 29.5	7.3 D A		6.8	7.5		
16	Sep 12	ZC 635	93868 K	3.6	62 -	S	6 27.2	3.3 B B	54 gamma Tau (Hyadum I)	4.7	4.7		
17	Sep 14	ZC 947	95432 A	5.2	39 -	Ν	3 54.6	7.6 D A	71 Ori	5.2	11.2		
18	Sep 16	ZC 1236	97645 Z	5.1	19-	N	2 32.1	8.1 D A	16 zeta Cnc (Tegmine)	5.6	6.0		
19	Sep 16	X 12393	97646 X	6.2	19-	N	2 32.2	8.2 D A	16 zeta2 Cnc (Companion)	6.2	9.0		
20	Sep 16	ZC 1241	97669 A	6.5	18 -	Ν	3 18.9	8.2 D A		6.4	12.3		
21	Sep 18	ZC 1487	98967 A	1.4	5 -	N	3 26.3	10.1 D A	32 alpha Leo (Regulus)				
22	Sep 25	ZC 2352	159888 M	7.0	28+	Ν	18 45.4	1.0 D B	107 B. Sco	7.6	7.8		
23	Sep 28	ZC 2760	187514 A	6.9	57+	S	21 35.0	3.5 D C		6.7	12.0		
24	Sep 29	ZC 2886	162964	4.9	66+	S	19 38.7	0.9 T A	56 f Sgr				
25	Oct 07	ZC 405	110723 V	4.3	94 -	N	19 24.6	13.5 D A	87 mu Cet	4.5	8.5		
26	Oct 10	ZC 871	94830	6.7	67 -	N	21 2.2	10.0 D C					
27	Nov 03	ZC 249	110065	4.5	98+	N	4 13.5	21.2 D B	106 nu Psc				
28	Nov 11	ZC 1415	98662 Y	6.3	47 -	N	0 43.7	8.9 D A	7 Leo	7.0	7.0		
29	Nov 13	ZC 1648	118823	6.9	26 -	N	1 52.4	7.1 D B	358 B. Leo				
30	Nov 21	ZC 2639	186544 A	6.0	9+	N	15 51.5	2.3 D C	16 Sgr	6.0	13.0		
31	Nov 24	ZC 3041	163910	6.2	31+	S	17 20.8	3.4 D A	81 B. Cap	0.0			
32	Nov 25	ZC 3177	164600 K	5.9	41+	N	20 54.3	3.3 B C	44 Cap	6.8	6.8		
33	Nov 28	X 240	128661	0.0	71+ 01	5	22 13.0	1.5 D B	26 Cat	6.0	0.0		
34	NOV 29	20 150	109643 A	0.1	81+	5	20 24.1	3.8 D A	26 Cet	0.2	8.6		
30	Dec 01	ZC 1497	08067 A	4.3	90+	N	21 37 2		32 alpha L ca	4.5	0.5		
30	Dec 08	70 4044	119904	1.4	64 -	0	21 37.3	9.1 D B	(Regulus)				
37	Dec 10	ZC 1644	118804	4.0	50 -	S	9 19.1	1.7 D C	(Shang Ts.)				
38	Dec 11	ZC 1733	119156	5.4	41-	N	1 8.8	3.9 D A	7 b Vir				
39	Dec 28	ZC 364	110543	4.3	75+	S	19 56.3	4.4 D A	73 xi2 Cet		46.5		
40	Dec 31	ZC 692	94027 A	0.9	93+	S	1 48.9	10.5 B A	87 alpha Tau (Aldebaran)	1.1	11.3		

Poland

2017	2017Grazing Occultations Poland 2017, <= 7.0 mag.												
No.	MD	USNO	SAOPPM D	MAG	%SNL	L.	W.UT	CUSP-A T	STAR NAME	MAG1	MAG2		
1	Apr 20	ZC 3022	163798	7.0	42 -	S	2 49.0	6.4 D C					
2	May 27	ZC 951	95456 V	6.6	5+	S	18 43.0	7.5 D C		7.1	8.4		
3	Jun 11	ZC 2666	186794 M	4.9	98 -	S	0 10.7	14.0 D A	21 Sgr	5.0	7.5		
4	Jul 25			0.2	6+	S	7 47.5	9.2 D A	Mercury				
5	Aug 15	ZC 491	93416	6.0	49 -	Ν	0 10.1	5.2 D A	8 B. Tau				
6	Aug 15	ZC 635	93868 K	3.6	38 -	Ν	23 27.1	4.1 D A	54 gamma Tau (Hyadum I)	4.7	4.7		
7	Aug 15	ZC 640	93876	5.3	38 -	S	23 34.8	3.5 B C	58 V696 Tau	5.3	5.3		
8	Aug 29	ZC 2399	160046	4.9	54+	Ν	19 25.1	0.5 T A	24 (Sco)/Oph				
9	Sep 10	X 3132	110464	6.8	83 -	Ν	2 3.3	9.4 D B					
10	Sep 11	ZC 462	93320 K	6.0	74 -	Ν	0 5.7	9.3 D A		6.7	6.7		
11	Sep 29	ZC 2886	162964	4.9	66+	S	19 53.8	1.9 D A	56 f Sgr				
12	Oct 12	X 11708	97260 A	7.0	44 -	Ν	22 24.2	9.3 D C		7.9	9.6		
13	Oct 15	ZC 1449	98809	6.5	22 -	Ν	2 21.0	7.6 D A	23 Leo				
14	Nov 13	ZC 1644	118804	4.0	26 -	S	1 25.9	6.4 B B	77 sigma Leo (Shang Ts.)				

IOTA's Mission

The International Occultation Timing Association, Inc. was established to encourage and facilitate the observation of occultations and eclipses. It provides predictions for grazing occultations of stars by the Moon and predictions for occultations of stars by asteroids and planets, information on observing equipment and techniques, and reports to the members of observations made.

The Offices and Officers of IOTA

President: Steven Preston	stevepr@acm.org
Executive Vice-President: Roger Venable	rjvmd@hughes.net
Executive Secretary: Richard Nugent	RNugent@wt.net
Secretary & Treasurer: Chad K. Ellington	stellarwave@yahoo.com
Vice President for Grazing Occultation Services: Dr. Mitsuru Soma	Mitsuru.Soma@gmail.com
Vice President for Planetary Occultation Services: Brad Timerson	reports@asteroidoccultation.com
Vice President for Lunar Occultation Services: Walt Robinson	webmaster@lunar-occultations.com
IOTA/ES President: Hans-Joachim Bode	president@iota-es.de
IOTA/ES Secretary: Michael Busse	secretary@iota-es.de
IOTA/ES Treasurer: Brigitte Thome-Bode	treasurer@iota-es.de
IOTA/ES Research & Development: Dr. Wolfgang Beisker	wbeisker@iota-es.de
IOTA/ES Public Relations: Konrad Guhl	PR@iota-es.de
Senior-Editor for Journal of Occultation Astronomy: Michael Busse	mbusse@iota-es.de
IOTA/ME President: Atila Poro	iotamiddleeast@yahoo.com
IOTA/ME Vice-President: Dr. Mohammad Reza Norouzi	norouzi.more@gmail.com
IOTA/ME Secreatry: Arya Sabouri	aryas86@yahoo.com
IOTA/ME Public Relations: Aydin M. Valipoor	ionodet@gmail.yahoo.com mr.mirbagheri@gmail.com

Impressum

Editorial staff: Wolfgang Beisker, Hans-Joachim Bode, Michael Busse, Alexander Pratt, Brigitte Thome-Bode Responsible in terms of the German press law: Hans-Joachim Bode Publisher: IOTA/ES Hans-Joachim Bode Journal of Occultation Astronomy: IOTA/ES; Bartold-Knaust-Straße 8; D-30459 Hannover, Germany Phone: 00 49-5 11-42 42 88 (in Germany 0511-42 42 88) email: joa@iota-es.de Layout Artist: IOTA/ES Michael Busse Webmaster: IOTA/ES Molfgang Beisker Membership fee IOTA/ES: 20,- Euro a year (incl. JOA: free of charge) Publication dates: 4 times a year In case of missing articles the publication date has to be shifted!

IOTA on the World Wide Web

(IOTA maintains the following web site for your information and rapid notification of events.)

http://www.occultations.org http://www.iota-es.de

This site contains information about the organization known as IOTA and provides information about joining

IOTA and IOTA/ES, including topics related to the Journal of Occulation Astronomy (JOA), and also has an on-line archive of all issues of Occultation Newsletter, IOTA's predecessor to JOA. On the right side of the main page of this site are included links to IOTA's major technical sites, as well as to the major IOTA sections, including those in Europe, Asia, Australia/New Zealand, and South America. The technical sites include definitions and information about observing and reporting, and results of, lunar, planetary, and asteroidal occultations, and of eclipses and other timely phenomena, including outer planet satellite mutual events and lunar meteor impact flashes.

Journal for Occultation Astronomy (ISSN 0737-6766) is published quarterly in the USA by the International Occultation Timing Association, Inc. (IOTA) 1267 Sheridan Drive, Owings MD 20736

IOTA is a tax-exempt organization under sections 501(c)(3) and 509(a)(2) of the Internal Revenue Code USA, and is incorporated in the state of Texas. Printed Circulation: 200

Regulations

The Journal of Occultation Astronomy (JOA) is not covenanted to print articles it did not ask for.

The author is responsible for the contents of his article & pictures.

If necessary for any reason JOA can shorten an article but without changing its sense or scientific contents.

JOA will always try to produce an article as soon as possible based to date & time of other articles it received – but actual announcements have the priority! Articles can be reprinted in other Journals if JOA has been asked for permission.

Press date JOA 2017-2: Mid/End of May 2017