

International Occultation Timing Association, Inc. (IOTA)

In This Issue
Feature Articles Page
Aldebaran/Camcorder News 351
Naked Eye Eclipse of Bright Star July 29 Can Aid Global Warming Studies 358
1997 Planetary, Cometary, and Asteroidal Occultations 360
Recently Observed Astcroidal Occultations 375
Venus and Jupiter Double Occultation 376
PHEMU97: First Observation by IOTA/ES 376
1997 July 18 Triton Occultation 376
An Analysis of Observations of the Z.C. 1029 Graze on 1996 Oct. 4 378
Cohmns Page
IOTA News 350
ESOP XVI in UK 1997 September 5 through 10 351
Grazing Occultation Reduction Status Report 359
IOTA Occultation Predictions 373
More Web Sites for IOTA 374
Tables Page
Lunar Occultation of 1.1-mag. Aldebaran on 1997 July 29 354
Lumar Occultation of 1.1-mag. Aldebaran on 1997 June 4 355
Lunar Occultation of 0.1 -mag. Saturn on 1997 June 28 356
Lunar Occultation of $0.2-\mathrm{mag}$. Saturn on 1997 July 25 356
Lunar Occultation of 1.1 -mag. Aldebaran on 1997 August 25 356
Table 4. Some Priority Events 361
Table 1. Occultations of stars by major and minor planets during 1997 June - December, and 2 earlier occultations 362
Table 2. Occultations of stars by major and minor planets during 1997 June - December, and 2 earlier events 363
Table 3. Stars with Significant Angular Diameters 368
Resources Page
What to Send to Whom 349
Membership and Subscription Information 349
IOTA Publications 349
The Offices and Officers of IOTA 389
IOTA Online--Timely Updates 389
IOTA European Service (IOTAES) 389

For subscription purposes, this the first issue of 1997.
The deadline for submissions to the next issue is 1997 July 1.

On the cover: The July 25 passage of asteroid Sappho (80) in front of 6.1 magnitude $S A O 92979$. (This star field was printed from Guide v5.1 from Project Pluto.)

What to Send to Whom

Send new and renewal memberships and subscriptions, back issue requests, address changes, e-mail address changes, graze prediction requests, reimbursement requests, special requests, and other IOTA business, but not observation reports, to:

Craig A. and Terri A. McManus
Secretary \& Treasurer
2760 SW Jewell Ave
Topeka KS 66611-1614 USA
E-Mail: IOTA@inlandnet.net
Send $O N$ articles and editorial matters in electronic form (start your e-mail Subject with ON) or in print form to:

Rex L. Easton
Editor for Occultation Newsletter
2007 SW Mission Ave, Apt. 1
Topeka KS 66604-3341 USA
E-Mail: SkyGazer@inlandnet.net
Send Lunar Grazing Occultation reports to:
Richard P. Wilds
V.P. for Grazing Occultation Services

3630 SW Belle Ave
Topeka KS 66614-4542 USA
E-Mail: DarkMatter-at-HART@worldnet.att.net
Send Total Occultation and copies of Lunar Grazing Occultation reports to:

International Lunar Occultation Centre (ILOC)
Geodesy and Geophysics Division
Hydrographic Department
Tsukiji-5, Chou-ku
Tokyo, 104 Japan
E-Mail: ILOC@wsl1.cue.jhd.go.jp
Send Asteroidal Appulse and Asteroidal Occultation reports to:
Jim Stamm
V.P. for Lunar Occultation Services

11781 N. Joi Drive
Tucson AZ 85737-8871 USA
E-Mail: JimStamm@aztec.asu.edu
Send IOTA Web Page information to:
Walter L. "Rob" Robinson
515 W Kump
Bonner Springs KS 66012-1439 USA
E-Mail: Robinson@solar.sky.net

Membership and Subscription Information

All payments made to IOTA must be in United States funds and drawn on a US bank, or by credit card charge to VISA or MasterCard. If you use VISA or MasterCard, include your account number, expiration date, and signature. (Do not send credit card information through e-mail. It is not secure nor safe to do so.) Make all payments to IOTA and send them to the Secretary \& Treasurer at the address on the left. Memberships and subscriptions may be made for one or two years, only.

Occultation Newsletter subscriptions (1 year $=4$ issues) are US $\$ 20.00$ per year for USA, Canada, and Mexico; and US $\$ 25.00$ per year for all others. Single issues, including back issues, are $1 / 4$ of the subscription price.

Memberships include the Occultation Newsletter and annual predictions and supplements. Memberships are US\$30.00 per year for USA, Canada, and Mexico; and US\$35.00 per year for all others. Observers from Europe and the British Isles should join the European Service (IOTA/ES). See the inside back cover for more information.

IOTA Publications

Although the following are included in membership, nonmembers will be charged for:

- Local Circumstances for Appulses of Solar System Objects with Stars predictions US $\$ 1.00$
- Graze Limit and Profile predictions US $\$ 1.50$ per graze.
- Papers explaining the use of the above predictions US\$2.50
- IOTA Observer's Manual US\$5.00

Asteroidal Occultation Supplements will be available for US\$2.50 from the following regional coordinators:

- South America--Orlando A. Naranjo; Universidad de los Andes; Dept. de Fisica; Mérida, Venezuela
- Europe--Roland Boninsegna; Rue de Mariembourg, 33; B-6381 DOURBES; Belgium or IOTA/ES (see back cover)
- Southern Africa--M. D. Overbeek; Box 212; Edenvale 1610; Republic of South Africa
- Australia and New Zealand--Graham Blow; P.O. Box 2241; Wellington, New Zealand
- Japan--Toshiro Hirose; 1-13 Shimomaruko 1-chome; Ota-ku, Tokyo 146, Japan
- All other areas--Jim Stamm; (see address at left)

ON Publication Information

Occultation Newsletter (ISSN 0737-6766) is published quarterly by the International Occultation Timing Association, Inc. (IOTA), 2760 SW Jewell Ave, Topeka KS 66611-1614, USA. IOTA is a tax exempt organization under sections 501(c)(3) and 509(a)(2) of the Internal Revenue Code USA, and is incorporated in the state of Texas. First class postage paid at Topeka KS, USA. Printing by Tony Murray of Georgetown, GA, USA. Circulation: 260.

International Occultation Timing Association, Inc. (IOTA)

IOTA News
David W. Dunham

IOTA Meetings: The Fifteenth Annual Meeting of the International Occultation Timing Association will be held July 26 through 28 at the Utah Valley State College Planetarium, 800 W 1200 South, Orem, Utah, close to I-15 about 40 miles south of Salt Lake City International Airport and about 5 miles north of Provo. This will allow observation of the grazing occultation of Aldebaran nearby on Tuesday morning, July 29, which is the best graze in the U.S.A. this year, and is one of the best of the current series of Aldebaran grazes in North America; see p. 293 of the January issue of Occultation Newsletter.

The official meeting will start at 9 AM MDT Sunday July 27, and will last until 5 PM that day. We also plan to gather there informally late in the afternoon and early evening of Saturday, July 26 , to meet casually and make some plans for the grazing occultation of Aldebaran on Tuesday morning, July 29. The planetarium is also available to us Monday afternoon, July 28, starting at 1 PM . We will meet there to complete any of the agenda not covered on Sunday, and to make detailed plans for the Aldebaran event. The meeting will be officially open to students of Utah Valley State College, and to others of the general public interested in attending, especially amateur astronomers from the surrounding area. Paul Mills is our point of contact at the planetarium; his email address is millspa@uvsc.edu. The planetarium is easy to reach at the intersection of State Route 265 and S800 West, 0.2 mile east of Route 265 's intersection with I-15 (exit 272). A map is on IOTA's web site at http://www.sky.net/~robinson/iotandx.htm. There are no motels close to the planetarium, but a relatively inexpensive one (US\$34/night for one person, add US\$6 for a second adult) is the Motel 6 in Provo near I-15 exit 266 (US 189, University Ave.) 6 miles south of the planetarium. The phone number for information is 801-375-5064 and 800-466-8356 for reservations. For Monday night, the closest Motel 6 to the Aldebaran graze path is at Midvale, at 496 N Catalpa St. just southeast of I-15 exit 301 (7200 S St.). Topics that will be covered at the meeting will include (but not be limited to):

1. the Aldebaran occultations
a. their value, outreach to the astronomical community and the general public for nakedeye events
b. videos of the Jan. 19 and April 11 occultations
2. recently-observed (especially Interamnia in December and Campania in March) and upcoming asteroidal occultations
3. IOTA's work with past asteroidal occultations and Hipparcos star catalog data
4. solar eclipse expeditions for Feb. 1998, and Feb. and Aug. 1999
5. changes and improvements to IOTA's predictions
a. efforts to improve graze profiles from past observed grazes
b. new capabilities of OCCULT
c. email distribution
6. instrumentation
a. video time insertion
b. recent successes with the IOTA occultation CCD camera
7. status of IOTA's Occultation Manual and analysis of solar eclipse observations

Contact me if you want to give a presentation. In late June an agenda will be prepared and put on our web site.

Bob Sandy (grazebob@sky.net) plans to lead an expedition from the Kansas City, Kansas area to near Casper, Wyoming, for the July 29 Aldebaran graze; some observers from the Denver area will also probably participate. On July 26 through 27, a local-area IOTA meeting might be held in the Kansas City area, primarily to plan for the expedition to Wyoming. If such a meeting is held, I can provide copies of the view graphs and video that I will prepare for the main IOTA meeting in Utah, and it might even be possible to communicate for a short time between this local meeting and the main meeting in Utah. News of any such meeting, and of preparations for the July 29 graze, will be given on our web site mentioned above. We also want to organize and publicize expeditions at as many other locations as possible along the Aldebaran northern limit from central California to western Ontario (and, in the daytime, near Oslo, south of Stockholm, and near Riga). Please provide me with any of your plans so they can be included in the next $O N$, as well as on our web site. The next $O N$ will also have more information about the July 29 Aldebaran and Hyades occultation. It is the second of only three good night crescent-Moon Aldebaran occultations visible under good conditions from populous parts of North America. The first was the April 11 occultation described on pages 312-314 of the last issue, and the third will be visible from the northwestern U.S.A. and western Canada on 1999 April 19 UTC.

There will also be an IOTA presentation at the Astronomical League's (AL) meeting at Copper Mountain Resort the first week of July. That will be a good opportunity to reach many AL members to encourage them to organize local observations for the graze and occultation of Aldebaran on July 29. We want as many people as possible to video record that outstanding naked-eye occultation in order to accurately trace the profile of the following edge of the Moon in detail.
Need help with occultation double stars: We thank Tony Murray in Georgetown, GA, for collecting occultation observations indicating stellar duplicity and publishing articles in $O N$ tabulating these discoveries during the past several years. Unfortunately, his circumstances changed recently so that he no longer can take the time needed to perform this important job properly, so he requests that someone else take up this work. Please contact me if you might be interested; email access will help with this job. Tony will continue his very important service to IOTA of printing $O N$ at the lowest possible cost.
Second Arab Astronomical Conference: This will be held September 8 through 10 at the Royal Jordanian Geographic Center
in Amman, Jordan, in cooperation with Al al-Bayt University. Topics that will be covered, among others, are amateur astronomy and astronomical culture; ancient astronomy in the Arabo-Islamic civilization; astronomy and space sciences in education; and modern discoveries in the solar system. Mohammed Odeh is planning a presentation on IOTA work using view graphs and video that I will provide to him. If any IOTA or IOTA/ES members could attend this meeting, it will be a good opportunity to promote occultation observation and our work in the Middle East and northern Africa. The deadline for submission of abstracts is June 30. More information can be obtained from:

Eng. Khalil Konsel	Tel.	$+962-6-857500$ (office)
P.O. Box 960774		$+962-6-821684$ (home)
Amman 11196, Jordan Fax:	$+962-6-811866$	
Email: moh_jas@hotmail.com		

> ESOP XVI in UK 1997 September 5 through 10
> Andrew Elliott
> aje@compuserve.com
> http://ourworld.compuserve.com/homepages/aje

TThe dates for ESOP XVI in the UK are Friday September 5, 1997 through Wednesday September 10. The venue is the Royal Greenwich Observatory (RGO) in Cambridge, NOT AS STATED IN THE LAST $O N$ (The date and venue remain the same as I stated at ESOP XV in Berlin last year). [ed.: The dates and location given in the last issue were wrong information obtained from a web site. David Dunham found out the error just as the last issue was sent off to the printer, so unfortunately his lastminute correction didn't make it into the issue. We apologize for any confusion that may have resulted].

The format of the meeting will be as usual--the Symposium will be held on Saturday and Sunday and there will be optional excursions Monday through Wednesday. Planned excursions include:

- Stonehenge ("special" tour), and Avebury, megalithic stone circle sites in Wiltshire. (The Internet virtual reality Stonehenge will also be demonstrated in a workshop!)
- The Mullard Radio Observatory, Stellar Interferometer (Cambridge Optical Aperture Synthesis Telescope COAST), and Isaac Newton's house, Woolsthorpe Manor (including cream teas!)
- The Old Greenwich Observatory (with planetarium show), and Maritime Museum, in London, with lunch in the Seventeenth Century Trafalgar Tavern overlooking the river Thames.

Accommodation for the duration of ESOP has been arranged in Fitzwilliam College, Cambridge, 10 minutes walk from the RGO. The cost of accommodation will be $£ 27.00$ per person per night (bed and breakfast) for a single room, and $£ 25.00$ per person sharing a double room. Only 10 double rooms are
available and preference will be given to couples. A room with computer(s), Internet connection, video, etc. will be available in the College for evening "workshops". Bert and Sheila Carpenter are also arranging local tours of Cambridge and the surrounding countryside on Friday and Saturday for accompanying guests, and we are hoping to have a reception $B \bar{Q}$ (barbeque) in the grounds of the RGO on Friday night. The Symposium Dinner will be held on Saturday night in Fitzwilliam College. Finally, there is a grazing occultation on September 11 in South East England. If there is enough support, we are hoping to organize an expedition for participants to observe the graze (weather permitting).

Arrangements are nearing completion but may be subject to last minute changes. We are still finalizing costs for the Symposium fee and excursions. As soon as we have finished this, we will send invitations to IOTA members and former ESOP participants. It would perhaps be as well to warn participants that because of the relatively high cost of living in the UK, and the popularity of Cambridge for conferences, this ESOP will be slightly more costly than previous years. It may be necessary for us to request an accommodation deposit when booking. We have had to pay a deposit on the accommodation and cancellation costs are very high! In order to reduce the cost of the Symposium Program and Proceedings, we will be asking for all papers to be submitted in electronic form--on floppy disk or by email.

Further announcements will be issued in due course but if you have any queries in the meantime please contact me.

Andrew Elliott email: aje@compuserve.com
40 Ryhill Way tel: +441189751056 (home)
Lower Earley fax: +441189392314 (office-emergency only) READING RG6 4AZ
United Kingdom 1

Aldebaran/Camcorder News
 David W. Dunham

On Thursday, April 10, John and Mickey Nelson in Bosque Farms, New Mexico, read about "an eclipse of a bright star" in the Albuquerque Journal. They had never recorded an astronomical observation before, and had no contact with the Albuquerque Astronomical Society or with any other astronomical organization. Following the instructions in John Fleck's newspaper article about the Aldebaran occultation, the Nelsons used their camcorder to record a few minutes of The Weather Channel a few minutes before the occultation, then took the device, still running, outside and zoomed in on the Moon. After an unsteady moment, the lunar crescent, the Earthlit dark side, and Aldebaran came into view. A short time later, the star disappeared, and the camcorder was brought inside to record some more of The Weather Channel. At the same time, Dale Ireland in Silverdale, Washington, was also recording The Weather Channel along with WWV shortwave time signals (after also recording the occultation directly with his camcorder), and I was doing the same thing in Greenbelt, MD, after having video recorded the occultations of 3 Hyades stars before clouds moved in. By using

International Occultation Timing Association, Inc. (IOTA)

my copy of Peter Manly's video time inserter with the two calibration tapes, it should be possible to recover the time of the occultation from John Nelson's tape to an accuracy of ± 0.05 second or better, considerably better than any of the many visual timings that were made of the occultation. That's quite good for someone who previously didn't know what an occultation was, and Aldebaran's altitude above the western horizon was only 4° at the time. The Nelsons had also recently purchased a small telescope to observe Comet Hale-Bopp.

The process started two days earlier when I faxed a onepage writeup about the occultation, and a simplified Moon figure showing what would happen (with the local time of the event to the nearest minute) in Albuquerque, to the Albuquerque Journal. I had sent similar faxes to 32 other newspapers in other large cities across western North America where the occultation would be visible; see my maps on p. 313 of the last $O N$. For his article, John Fleck had also looked at the additional information on our Web site (whose URL was given in the faxed message) and consulted me by telephone. I had also received inquiries from writers at newspapers in Edmonton, Alberta, and Orange County, California; otherwise, I don't know how well the event was really covered by the media. Rather than the hundreds of videotapes that I had hoped would be made, as of late April I have only received 4 tapes, although I know of about 7 others. John Nelson's tape is the only one that I have now that was clearly the result of IOTA's outreach to the public media; the others were made in response to my widely-distributed e-mail messages about the occultation and almost all by amateur astronomers. Some obtained the information about the occultation from online astronomy news groups and from IOTA's Web page.

More effort is needed earlier, to try to publicize nakedeye events like this in weekly news magazines and on television news. Now we have some actual video examples that can be used for the next good event, which will be the Aldebaran occultation on July 29. In April, too many amateur astronomers were unaware of the Aldebaran occultation, or learned of it only shortly before it happened, since there was no coverage of it in Astronomy, and only brief mention of it in Sky \& Telescope. To a large extent, the astronomical community has been almost totally preoccupied with Comet Hale-Bopp and was unaware of the occultation, one of only three crescent-Moon occultations of Aldebaran during the current series that are visible from North America in a dark sky. At least for the July event, there will be a major article in Sky \& Telescope stressing the need for readers to the spread word about the occultation locally to try to get many camcorder records, and we will also try to get word of the event out at the Astronomical League convention four weeks beforehand. I have rewritten the fax, that I sent to newspapers in April, in a form suitable for the July 29 occultation, so that you might use it as a local press release. It is given here after this article, and is also available on IOTA's sky.net web site, where you can download it for printing on your astronomical society's letterhead, and possibly modifying for local use. You are encouraged to replace my name and contact information at the bottom with your own. I would rather have you than me collect video tapes made in your area. Also needed is a
simple Moonview diagram like the one for St. Louis given here. Also here is a more detailed Moonview of the occultation showing the tracks for several other cities; the Sun symbol following the names of some cities indicate that the reappearance will take place after sunrise. The detailed Moon view can be used, along with the table of the occultation disappearance and reappearance cusp angles that includes all of the plotted cities and dozens of others, to make a version of the simple Moonview for your city. Consulting the table, get the cusp angles of the event for your city, and then find the two plotted cities with cusp angles that are closest to those for your city. Then you can interpolate to estimate the path behind the Moon for your city; you don't need to be precise for this relatively crude graphic (if you have OCCULT version 4.0, you could instead generate a detailed view showing the D and R points for your site). Just copy the simplified figure for St. Louis, cut out the lines and labels for that city, make another copy of the bare Moon figure, then add the lines and labels for your city. I don't think that the event will be suitable as a public "camcorder" event where the Sun will be above the horizon, or less than 4° below it. Astronomers, especially those in planetariums and in astronomy clubs (and not just IOTA members) need to understand the almost unique potential for public outreach that these nakedeye occultations can have. They provide a link to our past, since astronomers in ancient Babylon, Rome, Greece, China, Japan, and Arabia observed and recorded many naked-eye occultations. Now hundreds of people, not just astronomers, can video record them.

The April 11 UTC (April 10 local time) occultation was not the first attempt. In early March, we put on IOTA's web site a moonview and maps of Europe for the March 14 occultation of Aldebaran, similar to those in the last $O N$ for the April event. I also used OCCULT to compute the times of the occultation for almost 150 European and Middle Eastern cities, and distributed this list and an article, again similar to that for the April occultation in the last $O N$, to many email addresses. Newspaper articles and other public outreach attempts were made to obtain camcorder observations in at least Austria, Germany, Israel, and the Netherlands, but those countries were totally clouded out. One observer in the U.K. managed to videotape the event with a camcorder during a break in the clouds at his location, and said that he would send me a copy, but it has not yet arrived. Reports of several visual timings--from Norway, Russia, Spain, Romania, and Jordan--have been received. But as Ovidiu Vaduvescu explained, very few in Romania (and other eastern European countries, where it was mostly clear, or only with thin clouds, for the event) can afford camcorders with the low average incomes there. Matti Suhonen reported that he and a few others traveled to central Finland to try to observe the northern-limit graze there, although it was clear, they failed for various reasons, mainly in locating suitable observing sites in time. The March 14 occultation was better known by Europeans than the April 11 event was by Americans, since it was almost the five hudredth anniversary of an occultation of Aldebaran observed visually on March 9, 1497, by Copernicus, then a student in Bologna, Italy. A celebration and star party was held in Bologna on March 14, and I heard that the city's street lights were turned off for an hour around the time of

International Occultation Timing Association, Inc. (IOTA)

the occultation. But the idea of trying to reach the public to use camcorders for the event was not realized until my e-mail message about it was distributed on March 8. I wanted to prepare and send that earlier, but other commitments, including a considerable amount of work that I needed to do for computation and distribution of detailed IOTA graze and other predictions, did not allow it.

For the July 29 occultation, we need more regional coordinators to make recordings of a selected TV station and WWV. I can provide copies of those with accurate time displayed, so that the UTC of every frame in the broadcast can be read easily. In April, I asked many to do this in widely-distributed e-mail messages, but I did not have time to follow up to confirm that it would be done, so few such calibration tapes were made. We should have at least one in each time zone to try to determine any variations that there might be in the local time of broadcast. In order to have a broadcast that is simultaneous across the U.S.A. (that is, without any local programs of half an hour or more, or any time zone shifts), I have recommended The Weather Channel (TWC). But this might not be the best; for example, it is not available in Canada, which has a different weather channel. CNN might be a better choice since it is available in most parts of the world, and doesn't have the local weather interruptions of TWC. However, not everyone has cable, or satellite dishes to receive these directly. Especially if a local coordinator also serves as the collector of tapes made in the region, it would be better to select a local TV station (or a local affiliate of one of the major networks) to avoid the need for cable TV. I have found that pointing the camcorder at the TV screen, just propped up on a table and zoomed right to fill the view, is easy, but getting good reception of WWV in the house is difficult. Reception is helped by extending a 50 foot length of wire down the hallway and attached to the Timekube antenna, but I think it would be even better if the antenna wire could be stretched outside and extended in a direction roughly perpendicular to the direction to the transmitter (in Ft . Collins, Colorado, for WWV). On April 10, a strong auroral display in southern Canada changed reception characteristics, so that WWV was best received most of the evening at 15 MHz , usually a daytime frequency.

More IOTA members, and especially many other amateur astronomers, are also needed to try to make camcorder observations, especially telescopic video observations of the bright-limb events. For July 29, that will be easier than in April, since the star disappears on the bright side, so it should be easy to find the star approaching the Moon just before the occultation.

I can provide a time-inserted copy of your recording of The Weather Channel (or any other station that you selected for your region). Those who have access to WWV are encouraged to use it, and their tape can be time-inserted, as well. Help with playing the tapes will be needed to spread the work around to get the one accurate time from each tape. Anyone with a VCR that can display single frames can help with this, and are encouraged to volunteer.

The whole idea here is that video timings are about ten times more accurate than visual timings, which may soon become
obsolete for lunar total occultation observations (but not for grazing occultations). And video timings made from as many locations as possible can trace the lunar profile to incredible detail. Star parties for this occultation are discouraged, since a wide geographical distribution is essential to the success of the effort. Just about anyone anywhere in your area will be able to see the occultation, and they can record it if they have a camcorder.

The Moon moves half a mile in its orbit around the Earth each second, but actually slower after subtracting the velocity of the observer on the rotating Earth's surface. So a video timing to 0.03 second will give a relation to the lunar surface to about 80 feet. That's better than the 1994 Clementine spacecraft laser altimeter measurements, which were at best good to 150 feet. Thus, video recordings of the Aldebaran occultation from hundreds of locations across the region of visibility of the occultation can measure the lunar outline to unprecedented detail. This would be extremely
valuable for IOTA's analyses of not only lunar occultations, but also of total solar eclipse timings that have revealed small variations of the solar diameter during the last several years. Since the heat from the Sun received by the Earth is proportional to its diameter, these variations have an affect on studies of global warming and other short-term variations of the climate. The main thing limiting analysis of those observations is the lunar profile error, since the lunar orbit is now known to an accuracy of about a foot from laser ranging to the retroreflectors placed on the Moon's surface more than 20 years ago. And star position errors will be greatly reduced after the European Hipparcos spacecraft data are released later this year. The solar radius measurements have been limited to solar eclipses observed near the edges of the paths of totality, since the polar lunar features are the same from eclipse to eclipse. But if we had good lunar profile data, determinable from many camcorder observations of total lunar occultations, then we could obtain a much better history of solar radius variations from analysis of the much larger number of contact timings made near the central lines of annular and total solar eclipses.

This will not be the first time that camcorders were used by the general public to record an astronomical event. Twenty to thirty years ago, astronomers in Czechoslovakia, Canada, and the U.S.A. set up elaborate networks of special cameras to photograph and time bright meteors, and each caught one meteorite that was recovered after having its orbit determined from the photos. These relatively expensive networks have now been largely abandoned. But a couple of years ago, the orbit of a fourth meteorite was determined from the "Friday evening football network" of camcorders used by coaches and others at high school football games as a bright meteor streaked over Pennsylvania. The meteorite from this fall was the now famous Peekskill (New York) object that damaged a woman's car.

Direct camcorder observations might be made of occultations of other bright stars. I asked observers to try this for the occultation of 3.6 -mag. λ Geminorum on April 14 when the Moon was almost at first quarter, but so far I have not learned of any successes for that event. But I think at least one video record

Location					Moon		$\begin{array}{r} \text { Cusp } \\ \text { Ang } \\ \hline \end{array}$			$\begin{gathered} \mathbf{a} \\ \mathbf{m} / \mathbf{o} \end{gathered}$	bm / o
	h	m			Alt	Az					
Austin TX	9	4	58		14	79	-67N	55	64	-0.1	+1.8
Oklahoma City OK	9	15	32		17	82	-52N	40	49	-0.2	+2.3
Brownsville IX	8	57	57		12	77	-79N	67	76	-0.0	+1.4
Wichita Ks	9	20	47		19	83	-46N	34	43	-0.3	+2. 6
Dallas TX	9	9	35		16	80	-61	49	58	-0.1	+2.0
amaha	9	30	30		22	87	-3K	24	33	-0.4	+3.1
Tulsa 0	9	16	46		19	83	-52N	40	49	-0.2	+2.3
Topeka Ks		23	55		21	85	-44N	32	41	-0.2	+2.7
Houston TX	9	3	51		15	80	-71N	59	68	-0.0	+1
Kansas City mo	9	23	50		21	86	-45N	33	42	-0.2	+2.7
Des Moines IA	9	30	42		24	88	-39N	26	35	-0.3	+3.0
Minneapolis MN	9	41	52	-12	26	92	-26N	14	23	-0.5	+3.8
Little Rock AR	9	13	20		21	84	-60N	48	57	-0.0	+2.1
Duluth me	9	48	46	6-9	28	95	-20N	8	16	-0.8	+4.7
Guatemala City	8	51	17		14	76	-59S	109	118	+0.6	-0.2
Saint Louis MO		22	17		24	88	-52N	40	49	-0.0	+2.5
Jackson MS	9	8	39		21	83	-69N	57	66	+0.1	+1.9
New Orleans IA	9	4	33		20	82	-7@	64	73	+0.2	+1.6
Mermphis TN		14	15		23	85	-62N	50	59	+0.1	+2.1
Mobile AL	9	6	8	8	22	83	-76N	64	73	+0.2	+1.7
Milwaukee WI		34	6	6 -11	28	94	-42N	30	38	-0.1	+3.0
Chicago III		30	40		28	92	-4N	34	43	+0.0	+2.8
Montgamery AL	9	9	31		25	85	-73N	61	70	+0.3	+1.8
Indianapolis IN		25	24		28	92	-54N	42	50	+0.1	+2.5
Louisville KY		21	41	1	28	90	-58N	46	55	+0.2	+2.3
Cincinnati OH		24		6	29	92	-57N	45	54	+0.2	+2.4
Atlanta GA	9	12	41	1	27	87	-72N	60	69	+0.3	+1.9
San Jose costa rica	9		46	6	22	76	-20s	148	157	+3.3	-5.9
Knoxville TN		17	14	4	28	90	-6G	54	63	+0.	+2.1
Detroit MI		32	33	$3-9$	32	96	-50N	38	47	+0.2	+2.7
Tampa FL	9	4	19	9	26	85	-89N	77	86	+0. 6	+1.3
Cleveland OH		30	34	$4-9$	32	96	-54N	42	51	+0.3	+2.5
Jacksonville FL	9	8		5	28	87	-84N	72	81	+0.5	+1.5
Charleston WV		23		$6-12$	31	93	-63N	51	60	+0.4	+2.2
Sudbury on	9	44	41	$1-3$	35	103	-40N	28	37	+0.1	+3.1
Charlotte NC		16	55		31	91	-721	60	69	+0.	+1.9
Miami FL	9	3	17		28	84	-82S	86	95	+0. 8	+1.0
Pittaburgh PA		28	32	$2-9$	33	97	-59N	47	56	+0.4	+2.4
Charleston SC	9	12	58	8	31	89	-79N	67	76	+0.6	+1.7
Toronto ON	9	36	54	$4-5$	35	101	-51N	39	48	+0. 3	+2.7
Buffalo N		35		7 -5	35	100	-54N	42	50	+0. 4	+2.6
Raleigh NC		19		$8-12$	33	93	-73N	61	70	+0.6	+1.9
Richmond VA		23	17	$7-9$	35	95	-70N	58	67	+0.6	+2.1
Whashington DC		26	24	4 -8	36	97	-678	55	64	+0.6	+2.2
Baltimore MD		27	33	$3-7$	36	98	-6\$	54	63	+0.	+2.2
Norfolk VA		22	44	$4-9$	36	96	-73N	61	70	+0.6	+2.0
Dover DE		27	53	$3-6$	37	99	-68N	56	64	+0.6	+2.1
Philadolphia PA		29	56	$6-5$	37	100	-66N	54	63	+0.	+2.2
New York NY		32	19	9-4	39	102	-65N	53	62	+0.6	+2.2
Albany NY		36	52	$2-2$	39	104	-60N	48	57	+0.6	+2.4
Montreal PQ		44	16	6	40	109	-52N	40	49	+0.5	+2.7
Burlington VT	9	41	43	3	40	107	-5@	44	53	+0.	+2.6
Hartford CT		35	27	7 -2	40	104	-64N	52	61	+0.7	+2.3
Manchester ${ }^{\text {NH }}$		39		9	41	107	-62N	50	59	+0.7	+2.4
Providence RI		36	29	$9-1$	41	106	-65N	53	62	+0.7	+2.3
Quebec City PQ		49		2	42	113	-51N	39	48	+0.6	+2.7
Boston MA	9	37	51	1	41	107	-64N	52	61	+0.7	+2.3
Bangor mr	9	45	20	0	43	113	-60N	48	57	+0.7	+2.4
San Jtan PR		29		8 -8	46	85	-27s	141	150	+3.9	-4.2
Hamdlion Bormida		27	23	3 -2	47	100	-81s	87	96	+1.5	+1.1
Halifax NS	9	49	33	38	47	119	-6ホ	54	62	+1.0	+2.2
St Johns Mr	10	8	6	19	54	141	-67N	55	64	+1.3	+1.9

Lunar Occultation of 1.1-mag. Aldebaran on 1997 July 29
Reappearance, Koon 22-f sunlit, Solar elongation 57º

Location	OTC		Sun Moon			$\begin{gathered} \text { Cusp } \\ \text { Ang } \\ \hline \end{gathered}$		$\begin{array}{r} \mathrm{W} . \\ \text { Ang } \\ \hline \end{array}$	$\begin{array}{cl} \mathbf{a} & \mathbf{b} \\ \mathrm{m} / 0 & \mathrm{~m} / \mathrm{o} \end{array}$	
	h	m		Alt Alt	Az					
Freano CA	9	47	52	6	74	15N	333	341	+1.2	-2.7
Los Angeles CA	9	52	9	7	75	34N	314	323	+0.5	0.5
San Diego CA	9	53	9	8	76	41N	307	316	+0.4	-0.2
Las Vegas NV	9	52	40	11	77	29N	319	328	+0.7	-0.8
Phoenix Az	9	55	21	13	79	45N	303	312	+0.5	+0.0
Flagstaff Az	9	55	28	14	79	39N	309	318	+0. 6	-0.2
Tucson Az	9	55	45	14	79	51N	297	306	+0. 5	+0.2
La Paz Mexico	9	51	58	12	77	7ホ	272	281	+0.2	+0.7
Albuquerque MM	9	58	44	18	82	47N	302	310	+0.7	+0.1
E1 Paso TX	9	57	53	18	81	58N	291	299	+0.6	+0.4
Denver CO		59	29	20	85	31N	317		+1.1	0

				Sun		-			W.		
Iocation	h	m	3	Alt	Alt	Az	An		Ang	m/o	m/o
Cheyenne WY	9	58	27		20	86	24N	324	332	+1.4	-1.2
Pueblo ${ }^{\circ}$	10	0	24		21	85	38N	310	319	+0.9	-0.2
Lubboak TX	10	1	42		23	85	58N	290	299	+0.7	+0.5
Pierre SD	10	0	14		24	90	15N	333	341	+2.3	-3.0
Monterrey Mexico	9	56	41		22	82	82N	266	274	+0.5	+1.0
Acaprulco Mexico	9	46	8		18	78	715	239	248	+0.2	+1.5
Moxico City	9	49	54		21	79	785	246	255	+0.3	+1
San Antonio TX	10	1	15		25	84	74N	274	283	+0.7	+0.9
Anstin TX	10	2	32		26	85	72N	276	284	+0.7	+0. 8
Oklahoma City OR	10	6	18		27	89	57N	291	299	+0.9	+0.5
Brownsville TX	9	58	30		25	83	85N	263	272	+0.6	+1.1
Wichita Ks	10	7	30		28	90	51N	297	306	+1.0	+0.3
Dallas IX	10	5	15		28	87	66	282	290	+0.9	+0.7
Omaha NE	10	9	39	-12	29	93	40N	308	316	+1.2	-0.1
Tulsa OK	10	8	11		29	90	57N	291	299	+1.0	+0.5
Topeka Ks	10	9	40		29	92	49N	299	308	+1.1	+0.3
Houston TX	10	3	51		28	86	77N	271	280	+0.8	+0.9
Kansas City mo	10	10	58	-12	31	93	50N	298	307	+1.1	+0.3
Des Moines IA	10	12	35	-10	31	95	43N	305	314	+1.3	+0.0
Minneapolis MN	10	12	5	-7	31	98	30N	318	327	+1.6	-0.7
Little Rock AR	10	10	56		33	92	66N	282	291	+1.0	+0.8
Duluth me	10	12	9	-6	32	100	23N	325	334	+1.9	-1.5
Guatemala City	9	43	32		26	78	515	219	228	+0.1	+2.3
Saint Louis Mo	10	15	50	-8	35	96	57N	291	299	+1.2	+0.5
Jackson MS	10	11	4		34	91	76	272	281	+1.0	+1.0
New Orleans LA	10	8	41		34	90	83N	266	274	+1.0	+1.1
Merrphis TN	10	13	45	-11	35	94	68N	280	289	+1.1	+0.8
Mabile AL	10	11	27	-12	36	91	83N	265	274	+1.0	+1.1
Milwaukee WI	10	20	28	-4	37	102	46N	302	311	+1.4	+0.1
Chicago III	10	20	37	-4	37	102	51N	298	306	+1	+0.3
Montgomery AL	10	15	19	-9	39	94	80N	268	276	+1.1	+1.1
Indianapolis IN	10	21	48	-4	39	101	59N	289	298	+1.4	+0.6
Louisville KY	10	21	18	-5	40	100	64N	284	293	+1.3	+0.7
Cincinnati OH	10	23	38	-3	41	102	63N	285	294	+1.	+0.7
Atlanta GA	10	19	6	-6	41	97	79N	269	278	+1.2	+1.1
San Jose Costa rica	9	24	11		27	76	105	178	187	-2.2	+8.0
Knoxville TN	10	21	54	-4	41	100	73N	275	284	+1.3	+0.9
Detroit MI	10	27	25	0	42	107	55N	293	302	+1.5	+0.4
Tampa FI	10	13	53	-8	42	92	82 S	251	259	+1.1	+1.6
Cleveland OH	10	29	10	1	43	108	60N	289	297	+1.5	+0.5
Jacksonville FL	10	18	19	-6	43	96	88 s	256	265	+1.2	+1.4
Charleston WV	10	27	8	-1	44	105	69N	279	288	+1.5	+0.8
Sudbury an	10	31	26	4	42	113	44N	304	313	+1.7	-0.1
Charlotte NC	10	25	23	-2	45	102	79N	269	278	+1.4	+1.1
Miami FI	10	12	38	-8	44	91	735	241	250	+1.1	+1.8
Pittaburgh PA	10	31	7	2	45	109	65N	283	292	+1.5	+0.6
Charleston SC	10	23	50	-2	46	100	87N	261	270	+1.4	+1.3
Toronto ON	10	33	40	4	45	113	56\%	293	301	+1.6	+0.3
Buffalo NY	10	34	15	4	46	113	59N	290	298	+1.6	+0.4
Raleigh FC	10	29	8	1	47	105	80N	268	277	+1.5	+1.1
Richmond VA	10	32	43	3	48	109	76	272	281	+1.6	+0.9
Washington DC	10	34	35	4	48	111	73N	275	284	+1.6	+0.8
Baltimone MD	10	35	34	5	49	112	72N	276	285	+1.6	+0.8
Norfolk VA	10	33	56	4	50	109	79N	269	277	+1.6	+1.0
Dover DE	10	37	14	6	50	113	74N	274	283	+1.6	+0.8
Philadelphia PA	10	38	30	7	50	115	72N	277	285	+1.7	+0.8
New York NY	10	41	7	8	51	118	71N	277	286	+1.7	+0.7
Albany NY	10	42	31	9	50	120	65s	283	292	+1.7	+0.5
Montreal PQ	10	43	56	10	49	124	56N	292	300	+1.7	+0.2
Burlington VT	10	44	17	10	50	123	60N	288	297	+1.7	+0.3
Hartford CT	10	43	53	10	52	121	69N	279	288	+1.7	+0.6
Manchester NH	10	46	44	12	52	125	67s	282	290	+1.8	+0.5
Providence RI	10	46	8	11	53	123	70N	278	287	+1.8	+0.6
Quebac City PQ	10	48	12	13	50	129	55N	293	302	+1.8	+0.0
Boston MA	10	47	1	12	53	124	69N	279	288	+1.8	+0.6
Bangor Mre	10	52	14	15	53	132	64N	284	293	+1.8	+0.3
San Juan PR		59	36	-1	54	87	$16 S$	184	193	-0.8	+7.2
Hamilton Bermida	10	46	58	14	63	119	74S	242	251	+1.8	+1.8
Halifax NS	11		47	20	57	143	69N	279	288	+1.9	+0.3
St Johns Mr	11	22	30	31		173	67N	281	289	+1.9	3

Lunar Occultation of 1.1-mag. Aldebaran on 1997 June 4
Disappearance, Moon 0-\% sunlit, Solar elongation 7°

	UTC		Sun		Moon		Cusp Pos			$\begin{array}{cc} a & b \\ m / 0 & m / o \\ \hline \end{array}$	
Iocation	h	m		alt	1 l	Az	Ang				
Vancouver BC	22	43	26	50	43	242	-11s	113	122	+1.0	-2.0
Portland OR	22	52	37	50	43	247	25	126	135	+1.0	-2.7
Taccma MA	22	48	23	50	43	245	-4S	119	128	+1.0	-2.3

	UTC		Sun		Moon		Cusp Pos			$\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathrm{m} / \mathrm{o} & \mathrm{~m} / 0 \\ \hline \end{array}$	
Iocation	h	m	s	12	Alt	Az					
Seattle WA	22	47	44	49	42	245	-6S	118	127	+1.0	-2.3
Reno NV	23	18	9	44	38	260	345	158	167	+0.0	-6.
Boise ID	23	3	17	44	37	257	6 S	130	139	+0.7	-2.9

Lunar Occultation of $1.1-\mathrm{mag}$. Aldebaran on 1997 June 4
Reappearance, Moon $0-\%$ sunlit, Solar elongation 7°

Iocation	OTC			Sun	Moon		Cusp Pos Ang Ang		พ. Ang	$\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ m / 0 & m / o \\ \hline \end{array}$	
	h	m	3	Alt	Ilt	Az					
Anchorage AK	23	11	25	49	42	210	33N	267	276	+1.0	-0.7
Juneau AR	23	28	42	45	38	235	39N	261	270	+0.9	-1.0
Vancouver BC	23	45	43	40	33	256	62N	239	248	+0.9	-0.4
Portland OR	23	46	31	40	34	259	75N	227	235	+1.1	+0.3
Reno NV	23	41	50	40	33	264	74 S	197	206	+1.9	+4.2

Lunar Occultation of 0.1-mag. Saturn on 1997 June 28
Disappearance, Moon 39- \% sunlit, Solar elongation 78°

Location	UTC		Sun		Moon		$\begin{gathered} \text { Cusp } \\ \text { Ang } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Pos } \\ & \text { Ang } \end{aligned}$	W. Ang	$\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathrm{m} / \mathrm{o} & \mathrm{~m} / \mathrm{o} \\ \hline \end{array}$	
	h	n	3	Alt	1 t	Az					
Acapulco Maxico	10	48	25		49	101	-36	13	37	+0.4	+3.8
Mexico City	10	59	22		52	107	-26N	3	27	-0.1	+4.8
Guatemala City	10	50	48	-11	59	104	-62N	39	63	+1.4	+2.4
San Jose Costa Rica	10	53	42	-6	67	100	-87N	65	88	+2.3	+1.4
Tampa FI	11	42	0	12	66	157	-30N	8	31	+0.5	+4.3
Jacksonville FI	11	53	40	16	65	167	-20N	357	21	-0.3	+5.8
Miamd FI	11	35	54	12	68	157	-45N	22	46	+1.2	+3.2
Charleston SC	12	11	36	22	63	182	-4N	341	5	+9.9	+9.9
San Juan PR	11	49	24	25	74	215	-87s	70	94	+2. 6	+0.8
Hamditon Bermuda	12	14	2	35	59	214	-49N	26	50	+1	+2.5

Lunar Occultation of 0.1-mag. Saturn on 1997 June 28
Reappearance, Moon 39-sunlit, Solar elongation 77°

Location	OTC		Sun		Moon		Cusp Ang		$\begin{array}{r} \mathrm{W} . \\ \text { Ang } \\ \hline \end{array}$	$\begin{array}{cc} a & b \\ m / a & m / o \end{array}$	
	h	m	${ }^{5}$	Alt	t	Az					
Acapulco Maxico	11	42	53	-7	62	111	48N	290	313	+3.4	-0.9
Moxico City	11	42	21	-5	61	116	37N	300	324	+4.0	9
Guatemala City	12	12	24	7	77	133	76N	261	285	+2.9	+0.6
San Jose Costa Rica	12	24	8	14	86	177	775	234	258	+2.4	+1.7
Tampa II	12	33	16	23	67	190	42N	295	319	+3.7	-2.0
Jacksonville r	12	30	5	24	65	189	30N	307	331	+4.4	-3.7
Miamd IT	12	43	53	27	68	204	57N	281	304	+3.2	-0.9
Charleston SC	12	23	50	25	62	189	14N	324	347	+9.9	+9.9
San Juan PR	13	16	48	45	57	251	775	235	259	+1.9	+1.2
Hamilton Bermuda	13	17	46	48	49	236	54	284	307	+2	-1.6

Lunar Occultation of 0.2-mag. Saturn on 1997 July 25
Disappearance, Moon 61- ounlit, Solar elongation 103°

Location	UTC		Sun		Moon		Cusp		W	$\begin{gathered} \mathbf{a} \\ \mathrm{m} / \mathrm{o} \end{gathered}$	
	h	m	3	Alt	Alt	Az^{2}	Ang		Ang		m/o
Honolulu HI	20	22	40	58	19	269	-80N	58	82	+0.6	+0.4
Hilo HI	20	23	44	61	16	270	-86N	64	88	+0.5	+0.2

Lunar Ocoultation of 0.2-mag. Saturn on 1997 July 25
Reappearance, Moon 61- sunlit, Solar elongation 102°

	T		Sun		\%on	Cusp		W.			
Location	h m	3	Alt	Alt	Az	Anc				m/o	
Honolulu HI	2120	42	72	6	274	70N	268	292		0.	0.6

Lunar occultation of 1.1-mag. Aldebaran on 1997 August 25 Disappearance, Moon 44- sunlit, Solar elongation 83°

	UTC		Sun		Moon		Cusp Pos			$\begin{array}{cc} a & b \\ m / 0 & m / o \\ \hline \end{array}$	
Location	h	m	3		1 l	Az					
Honolulu HI	15	42	43	-8	73	103	-52s	119	128	+3.4	-1.6
Hilo HI	15	57	6	-2	79	105	-39S	132	141	+4.1	-3.6
Vancouver BC	17	8	33	36	44	238	-33N	24	33	+1.5	+2.6
Portland OR	17	3	9	37	47	240	-52N	43	51	+1.	+1.0
Tacoma VA	17	5	31	36	46	240	-44N	35	43	+1.5	+1
San Francisco CA	17	0	41	39	51	248	-81N	72	80	+1.7	-0.2
Seattle WA	17	6	21	36	45	240	-42N	33	42	+1	+1.7

	UTV				Moon		Cusp			$\begin{gathered} \mathrm{a} \\ \mathrm{~m} / \mathrm{o} \end{gathered}$	$\begin{aligned} & \mathbf{b} \\ & \mathrm{m} / \mathrm{o} \end{aligned}$
Iocation	h	m		Alt							
Reno NV	17	44	45	41	47	250	-74N	65	73	+1.6-0	-0.0
Fresno CA	17	51	19	43	48	253	-83N	74	83	+1.6-0	-0.3
Los Angeles CA	17	85	56	45	47	257	-88S	83	92	+1.6	-0.7
San Diego CA	17	11	47	47	46	260	-84S	87	96	+1.5	-0.8
Boise ID	17	11	7	43	42	251	-57N	48	57	+1	+0.6
Las Vegas NV	17	12	31	48	43	258	-83N	74	83	+1.4	-0.4
Phoenix Az	17	18	13	52	40	264	-89S	82	90	+1.3	-0.7
Helena mar	17	19	34	45	37	254	-41N	32	41	+1.4	+1.4
Salt Lake City UT	17	16	9	48	39	258	-65N	56	65	+1.	+0.1
Plagstaff Az	17	17	46	51	40	263	-84N	75	84	+1.3	-0.5
Tucson Az	17	20	41	54	39	266	-86S	85	94	+1.2	-0.8
La Paz Mexico	17	31	38	60	36	274	-58s	113	122	+0.9	-1.8
Albuquerque NM	17	23	39	56	34	267	-82N	73	82	+1.1	-0.5
$\mathrm{ELI}_{\text {Paso TX }}$	17	26	2	58	34	269	-87S	84	92	+1.0	-0.
Denver CO	17	24	20	54	32	265	-64N	55	64	+1.1	+0.0
Cheyenne WY	17	24	41	53	32	264	-59N	50	59	+1.1	+0.2
Pueblo 0	17	24	44	55	32	266	-69N	60	69	+1.	-0.
Lubbock TX	17	29	10	61	29	271	-83N	74	83	+0.	-0.6
Pierre SD	17	31	23	53	27	267	-41N	32	41	+1	+1.1
Monterrey Mexico	17	37	12	68	26	277	-72s	99	108	+0	-1.2
Acapulco Mexico	17	52	18	76	20	282	-38s	133	142	+0.1	-2
Mexico City	17	47	7	75	21	281	-50s	121	130	+0.	-1.9
San Antonio TX	17	34	37	66	25	276	-86S	85	94	+0.7	-0.8
Austin TX	17	34	27	66	24	276	-89S	82	91	+0.7	-0.7
Oklahoma City or	17	31	53	62	25	273	-73N	64	73	+0.	-0
Brownsville TX	17	38	32	70	23	278	-75s	96	105	+0.5	-1.1
Wichita KS	17	31	38	60	25	272	-6GN	57	65	+0.8	-0
Dallas TX	17	33	33	64	24	275	-82N	73	82	+0.7	-0.5
Fargo ND	17	43	4	52	23	270	-15N	6	15	+2.6	+8.0
Cmaha NE	17	33	29	57	24	272	-50N	41	50	+0.9	+0. 5
Tulsa 0	17	32	56	62	24	274	-70N	61	70	+0.7	-0.2
Topeka KS	17	33	2	59	24	273	-59N	50	59	+0.8	+0.1
Houston TX	17	36	18	68	22	277	-89S	82	90	+0.6	-0.7
Kansas City mo	17	33	54	60	23	273	-58N	49	58	+0.8	+0.2
Des Moines IA	17	35	43	58	22	273	-46N	37	46	+0.9	+0.7
Minneapolis MN	17	40	48	55	21	273	-27N	18	27	+1	+2.8
Little Roak AR	17	35	41	65	20	277	-71N	62	71	+0	-0.2
Guatemala City	17	56	22	86	10	285	-40S	131	140	-0.3	-2.0
Saint Louis Mo	17	37	0	61	19	277	-55N	46	55	+0.7	+0.3
Jackson MS	17	37	39	68	18	279	-78N	69	77	+0.5	-0.4
New Orleans LA	17	38	48	70	17	280	-85N	76	85	+0.4	-0.5
Menphis TN	17	37	1	65	18	278	-68N	59	68	+0.6	-0.1
Mobile AL	17	39	16	70	15	280	-81N	72	81	+0.	-0.4
milwaukee WI	17	42	42	57	16	278	-31N	22	30	+1.	+2.0
Chicago III	17	41	7	59	16	278	-37N	28	37	+0.	+1.3
Montgamery al	17	39	21	68	14	281	-74N	65	74	+0.	-0.3
Indianapolis nN	17	40	19	61	15	279	-46N	37	45	+0.	+0
Louisville KX	17	39	45	62	14	280	-52N	43	52	+0.	+0.4
Cincinnati OH	17	40	58	61	13	280	-46N	37	46	+0.	+0.7
Atlanta GA	17	39	49	67	13	282	-67N	58	67	+0.	-0.1
Knosville TN	17	40	6	65	13	281	-59N	50	59	+0.5	+0.2
Datroit MI	17	46	40	58	12	282	-25N	16	25	+1.2	+2.9
Tampa FI	17	42	4	72		284	-85N	76	84	+0.	-0.5
Cleveland OH	17	45	54	59	11	282	-29N	20	29	+1.0	+2. 2
Jacksonville FI	17	41	20	70		284	-76N	67	76	+0.2	-0.3
Charleston WV	17	42	8	62	11	1283	-46N	37	46	+0.	+0.7
Charlotte NC	17	41	15	65	10	283	-58N	49	58	+0.	+0.2
Miami FI	17	43	25	74		6285	-89N	80	89	+0.1	-0.5
Pittsburgh PA	17	45	27	60		284	-33N	24	33	+0.	+1.7
Charleston SC	17	41	22	67		8284	-66N	57	66	+0.	-0.0
Raleigh NC	17	742	13	64		8285	-53N	44	53	+0.4	+0.4
Richmond VA	17	143	38	62		7285	-44N	35	44	+0.5	+0.8
Wrashington DC	17	745	14	61		286	-37N	28	37	+0.	+1. ${ }^{\text {c }}$
Baltimore MD	17	46	5	60		28	-34N	25	34	+0	+1.6

Lunar Occultation of 1.1-mag. Aldebaran on 1997 Anguat 25
Reappearance, Moon 44- z sunlit, Solar elongation 83°

Iocation	UTC		Sun		Moon		Cusp Pos			$\begin{array}{cc} a & b \\ m / 0 & m / o \\ \hline \end{array}$	
	h	m			Alt	Az	Ang				
Honolulu HI	16	53	7	8	85	186	415	213	221	+2.2	+3.7
Hilo HI	16	52	11	11	85	224	29S	200	209	+2.0	5.5
Vancouver BC	17	44	6	40	39	247	25N	326	334	+0.6	-4.4
Portland OR	17	57	37	45	38	254	43N	308	317	+0.8	-2.9
Taccma WA	17	52	14	43	38	251	35N	316	324	+0.	-3.
San Francisco CA	18	14	23	52	36	263	71N	280	289	+0.9	-1.5
Seattle WA	17	51	4	43	38	251	34N	318	326	+0.7	-3.5
Reno NV	18	13	41	53	34	263	63N	288	296	+0.8	-1.9
Fresno CA	18	18	15	55	34	266	72N	279	287	+0.	5

International Occultation Timing Association, Inc. (IOTA)

Naked Eye Eclipse of Bright Star July 29 Can Aid Global Warming Studies

Just before dawn Tuesday morning, July 29, a rare naked-eye celestial spectacle might be seen in the area. If clouds don't interfere, you can watch the thin crescent Moon uncover Aldebaran, a bright orange star in the constellation Taurus the Bull. Moreover, if you have a camcorder, you can point it at the Moon at the right time to film the star's sudden reappearance. Zoom in on the Moon, whose dark side will be faintly illuminated by sunlight reflected from the Earth, a couple of minutes before the star is due to pop out near the Moon's top. Astronomers use the term "occultation" for such eclipses of stars by the Moon. The International Occultation Timing Association, Inc. (IOTA) is seeking video recordings from as many separate locations as possible in a program to chart the edge of the Moon in unprecedented detail. During the last 20 years, members of IOTA have determined small cyclic variations in the solar diameter from analysis of video recordings of over a dozen solar eclipses. These are probably significant for studies of global warming and other climactic changes, but our work is limited by our current knowledge of the heights of craters and valleys along the Moon's edge.

Select a location where trees or buildings will not block the view of the Moon, which will be rising low in the east. For precise timing, you need to keep the camcorder running, and before and after the reappearance, point the camcorder at your television set and record The Weather Channel, for one or two minutes. Each time, be sure to record part of the national broadcast not including the local forecast. Most camcorders have a time display to the nearest second, and that should be running during your recording.

If you record the occultation, your location needs to be measured to 50 feet or better, which can be done by counting paces from the nearest street intersection (both along the street, and perpendicular to it to the observing location), and by measuring your pace by counting paces between two street intersections. It would be useful to include some views of your observation place in the video. Please send your tape, or a copy of it, with the information about your position, to the author. Enclose a label or piece of paper with your address typed or printed, so that we can return your tape after we analyze it. Also, include a telephone number or an e-mail address so we can communicate with you if we have any questions about your observation.

For those without camcorders, the reappearance can be seen directly with the naked eye. It will help to block the bright part of the Moon with an outstretched finger, or position yourself so that it is blocked by a telephone pole, building, or other obstruction, while the dark side of the Moon remains visible. For those who get up about an hour earlier, camcorders held up to a telescope's eyepiece might catch Aldebaran's disappearance on the Moon's sunlit side not long after moonrise. Some optical aid, possibly binoculars, will be needed to see it.

This is the third occultation of a bright star by the crescent Moon visible from areas where camcorders are now common. The first was an Aldebaran eclipse in Europe in March, but few videos were made due to clouds. The second was visible from the west coast the evening of April 10, but most people interested in the sky were distracted by Comet Hale-Bopp, then at its brightest, so few observed that good event. After July 29, North America will have only one more good opportunity during the current series of Aldebaran events, on the evening of April 18, 1999 in the Northwest. Aldebaran is the brightest star, other than the Sun, that can ever be eclipsed by the Moon. The Aldebaran eclipses come in series that last 4 years, with a 14-year gap before the next series, but only a few occur under goodenough conditions for naked-eye viewing from a given place.

More information about this occultation is on our web site at http://www.sky.net/~robinson/iotandx.htm, which includes a list of local times of the event for dozens of cities. A local view of the Moon showing the path of Aldebaran behind it and including local event times is enclosed.

Weekday telephone: 301-953-5609; email: David_Dunham@jhuapl.edu
Home telephone: 301-474-4722; email: Dunham@erols.com \mathfrak{t}

International Occultation Timing Association, Inc. (IOTA)

Grazing Occultation Reduction Status Report David Herald
heraldd@canberra.dialix.com.au

Igive a revised list of corrections to grazing occultations in ILOC's files below (only a few of them are given here, as illustrative examples; the full list is available upon request). I was able to identify almost all events with the extra assistance of the IOTA file (one event had both the year and day wrong in ILOC, and the day wrong in IOTA--a tough one!). \{The IOTA file is a summary list prepared by Don Stockbauer and Don Oliver, mainly covering grazes from 1974 to 1986 . It is posted on IOTA's "sky.net" web site\}. I am using the P and D system, rather than Watts angle, and longitude and latitude librations, since there are not enough observations to reasonably cover the latter 3-D system. In the P and D system for grazes, P is almost the same as Watts angle, and D is close to the latitude libration for southern-limit grazes, and is approximately the negative of the latitude libration for northern-limit grazes. I am undertaking this analysis mainly to create better profiles in the Cassini regions with OCCULT.

I have made the corrections in my data set, and then re-reduced them all. Then I have split the data into bands of 1° total width, at intervals of 1° in the D coordinate (e.g. D from -2.5 to -3.5 in one file), keeping only data for D's and R's (ignoring blinks and flashes) and only had regard to components of doubles indicated as B, i.e., have tried to use reliable observations only (also, limited to certainty code of 1).

I then read the files into Excel, sorted them by P, and plotted the data. From this I was able to deduce fairly reliably the 'average' hunar profile--and erroneous observations generally stand out--for most values of D. Interestingly, the northern Cassini region is very uncertain for D between -2 and -4 , whereas the southern Cassini region is uncertain at around -6 (large scatter in the residuals--suggesting that there is something which affects those observations, such as moon illumination?).

I hope to finish what I'm doing in the next few days. I will then send the updated corrections, and my derived profile data (at 0.5° intervals in $\mathrm{P}, 1^{\circ}$ in D --and the data do not justify higher resolution). I think it may also be useful to publish the profile data in Occultation Newsletter-at least so people can have a better feel for the probable uncertainties in the data. I should also add that the profile that I have derived for the northern region is significantly different from what I had derived previously from the old ACLPPP data--generally somewhat lower. (I'm still to do the southern.)

When more data becomes available (e.g. pre 1977, post 1993) it should not be too much trouble to repeat the exercise. The most tedious part of the whole thing has been checking the original data for obvious errors.

Finally, I have come to the conclusion that using all of the graze data is far more preferable to using just 'well observed' grazes-e.g. there are several instances where there are a series of events reported which are quite clearly erroneous. Putting all the data into the solution shows up all such inconsistencies (and there is even one very well observed event that, despite my error checking, is clearly out by 3 arcseconds.)

I have attached the consolidated list of corrections to the ILOC graze data. There are only a couple of events that remain unresolved, although for a number of events where the correction is to the site coordinates, the correction is really only a 'best guess' and the original data ought to be checked to confirm. If that's not possible, the only other option I can think of is for someone to look at relevant survey maps to see what coordinates seem likely (e.g. on a road versus in the middle of nowhere!)-- but that will be an incredibly time consuming task. \{It might be better to contact the expedition leaders by email and ask them to check the site positions $\}$.

My other observation at this stage concerns the 'certainty' code as reported by observers. Perhaps unsurprisingly, there are a fair few observations reported as certain which are not real. Perhaps observers need more guidance on this--but I suspect there may be an argument that graze organizers ought to be more critical of the reports they receive. For example, there are too many 'certain' events where the residual is more than 3 ".

I think I have finished the Northern Cassini region in P, D. I have plotted the resulting data in Excel, and there is better consistency than in my previous data set. The profile varies between a maximum of about $+0.5^{\prime \prime}$ (for P around 358° to 1°) and $-0.8^{\prime \prime}$ (P around 2° to 3°).

For the Southern region, I haven't directly used the data from the Feb 2 graze in Europe--but that data are entirely consistent with the plots of the residuals that I have generated so far.

Some examples from my list of corrections are given below.

X $18369=$ S 138744 on 76 Nov 19 at TA432 7601 Star should be $\mathrm{X} 19634=\mathrm{S} 158105$

R1925 on 1976 Aug 27/28, at TD140 7601 Wrong date. Read 28/29

R1744 on 1977 May 28 at T9585 7781 Site coordinates wrong.
R648 on 1977 Feb 26 at TA170 04 hr for 03, read 02 (5 records)
X $23511=\mathrm{S} 160534$ on 77 Mar 12 at TB413 7701 The observer's latitude should be 1° further north, i.e. 33°, not 32°.

X 11017 = S 96848 on 77 Nov 2 site TB503030101 Observer's latitude appears to be wrong, but correction is not apparent. Latitude is given as $36^{\circ} 40^{\prime}$, should be somewhere around $34^{\circ} 6^{\prime}$ (This is a deep North Cassini graze, so it would be good if the error could be found.)

R 106 on 1981 Feb 8 at SI100 Ignore this graze. The data are unreliable. The star was at an altitude of $8^{\circ} ; 3$ of the 6 telescopes were clearly of too small an aperture. Although data from 3 observers with 20 cm telescopes looks OK by themselves, they're inconsistent. Best to ignore all.

R2399 on 81 Sep 6 Site SN108 8142 Latitude for 39°, read 36°. Also, add 10 mins to all times.

R2513 on 1984 Jun 13 at TVG84. Subtract 10 hrs from all times (Local time reported!)

R483 on 1990 Feb 3 at SN286 Although a miss is reported, there is something wrong with the data
(residuals 6700")
R2417 on 1992 May 18 at TU5B2 Ignore. Star mag 7.0 against a 98% moon with a 20 cm telescope. Star
1 mag too faint for visibility. Residuals all too large. 1

1997 Planetary, Cometary, and Asteroidal Occultations
David W. Dunham and Edwin Goffin

This is a continuation of the article with the same name on pages 316 to 325 of the last issue. The map on page 322 was not part of that article, but rather should have been with the article on occultations during the March 24 lunar eclipse on page 334. Dunham recently discovered an error in his computer program for these occultations that caused the position of the Moon to be up to 16° ahead of or behind its actual position, causing all of the information about the Moon given in the last 3 columns of Table 1 to be in error by that amount, and also the MR and MS points on the maps to be similarly incorrectly positioned, in the last $O N$. The data in Table 1 in this issue are correct, but the MR and MS points on the three regional maps given here have the error. The lunar data in IOTA's local circumstance appulse (LOCM) predictions, and on the charts by Goffin, are all correct.

The paths for 7 events in North America have been shifted from Goffin's prediction, and from those shown on Dunham's maps on pages 73 and 74 of the February issue of Sky \& Telescope, based on improved positions and proper motions of the target stars from recent observations of them with the Carlsberg Automated Meridian Circle (CAMC). These stars have source code (under column " S ", just before the Apparent R.A. and Dec.) " T " in Table 2. But they are not recent updates if the star's position originally came from a CAMC catalog, which is the case for stars whose "DM/ID No" in the middle of Table 2 starts with "CR".

Notes about Individual Events (April 29, May 22, and June 1 to September 19):
April 29, Kleopatra: In the last issue, I gave predictions for occultations of two GSC stars on this date. Jan Manek of Stefanik Observatory in Prague, Czech Republic, investigated this "double" and found only one star. Although the GSC field number (first 4 digits of the GSC number) of the two "stars" is the same, the stars are actually measures of the same star from two different plates; there are some other false "doubles" nearby. The positions of these stars given in GSC 1.2 are nearly identical (much closer than
the $2^{\prime \prime}$ difference of the GSC 1.1 positions) and have been used for a new prediction and path shown on the Western Hemisphere map given here. So rather than the two paths given on page 323 last time (extending down the Alaska peninsula, Vancouver Is., Washington to Texas, Jamaica, and just north of Trinidad for GSC 5559 0096, and across much of the north and equatorial Pacific, southern Peru, Bolivia, and Brazil over Belo Horizonte for GSC 5559 1159), there is only one path that crosses much of the Pacific Ocean missing North America well to the south, then crossing Ecuador (6:49 UTC), northeastern Peru (6:48 UTC), the Amazon basin, and just south of Recife, Brazil (6:45 UTC). The motion is east to west, opposite of the order in which I have described the paths. The GSC 1.2 positions are significantly more accurate than those of GSC 1.1 used for the old predictions, so it is quite certain that the occultation will not occur in North America. Too late for $O N$, I distributed this by email to observers in the areas described above the day before the event, and we also placed the Western Hemisphere map that shows the path (along with those for other good events on May 22 and from June 1 to Sept. 19) on IOTA's asteroidal occultation web site at http://www.anomalies.com/iota/splash.htm.
May 22, Eleonora: This was also given in the last issue, but now not only do we have a recent CAMC position for the star, but alsc the orbit of Eleonora has been updated by Martin Federspiel using dozens of CAMC observations of the asteroid, some of them very recent. The same technique was used to successfully predict last December 17's occultation by (704) Interamnia to within about 0.02 ", based on the 9 observations of that event made in California, Arizona, and New Mexico that have been reported to me, so the prediction for this occultation is also likely to be good to a small fraction of the path width, making it worthwhile for those who can to travel into the new path in the Pyrennes region (around 3:26 UTC), northern Newfoundland (3:32 UTC), Quebec (3:33 UTC), southern James Bay (3:34 UTC), and near Lake Winnipeg (3:35 UTC) to try to observe it.
June 2, Pallas: The path has been updated with Twin Astrographic Catalog (TAC) data for the star, and this moves the path northward into populous parts of Australia.
June 10: The star is ZC $3105=\mathrm{HR} 8122$.
June 15: SAO 187578 is a double star, B 418, with component magnitudes 8.8 and 13.8 , separated by 1.15 in P.A. 156°. Separate predictions are now given for the two components, but any events involving B would be very difficult to observe, even if the seeing is good enough to resolve the components directly.
July 25, Sappho: SAO $92979=26$ Arietis $=$ ZC 370. Lunar occultation observations by Robert Sandy and others indicate that the star may be a close double, as described in $O N$ (vol. 5, no. 2, pg. 57).
Aug. 3, Venus: Venus will be 84% sunlit with only a 2 ". 05 defect of illumination in P.A. 110°. So the disappearance will be on the dark side, but so close to the sunlit part of Venus for such a faint star that observation will be doubtful. The central line (maybe with a central flash?) crosses New Zealand.
Aug. 12, Fortuna: SAO 146019 is Aitken Double Star (ADS) 15832 with components mag. 8.9 and 12.1 , separated by 0.8 in
P.A. 212°. Separate predictions are given for the two components, but any events involving B would be very difficult to observe, even if the seeing is good enough to resolve the components directly.
Aug. 15: Mars will be 89% sunlit with only a 0 ". 66 defect of illumination in P.A. 111°. So the disappearance will be on the dark side, but so close to the sunlit part of Mars for this faint a star that observation will be doubtful. The central line is in the southern Indian Ocean.
Aug. 19, Simeisa: SAO 78005 $=$ X08360.
Aug. 20, Mathilde: The asteroid is the slow-rotating flyby target of the Near Earth Asteroid Rendezvous (NEAR) mission. That flyby will be on June 27.
Aug. 28, Flora: SAO 128987 is the double star RST 4159 with components mag. 8.9 and 12.4 , separated by 0.18 in P.A. 35°. Separate predictions are given for the two components, but any events involving B would be very difficult to observe, even if the seeing is good enough to resolve the components directly. Flora being 0.2 mag. brighter than the primary star will make B events even more difficult.
Aug. 28, Venus: Venus will be 76% sunlit with a 3 ". 4 defect of illumination in P.A. 113°. So the disappearance will be on the dark side, but it will be difficult to see a 9 -mag. star this close to the dazzling planet. The central line is in the Atlantic Ocean north of Brazil.
Sep. 3, Mathilde: See Aug. 20 note. Goffin's original prediction had the path on the Earth's surface, but it used the GSC 1.1 position for the star; that catalog also gave the mag. as 5.6, which is much too bright. When the more accurate PPM data are used for this star, SAO 93528, the path misses the Earth's surface to the north, but there is a small chance that the actual path could shift south into Scandinavia.
Sep. 16: SAO $76505=$ ZC $621=$ HR 1297, a spectroscopic binary.
Sep. 3, Amphitrite: SAO 158462 = ZC 2045 = HR 5344.
Sep. 10, Venus: Venus will be 72% sunlit with a 4 ". 2 defect of illumination in P.A. 112°. So the disappearance will be on the dark side, but it will be difficult to see these two 9 -mag. stars this close to the dazzling planet. The central line for PPM 717345 crosses Australia at latitude -20°; maybe a central flash could be seen there? The central line for PPM 717350 is in Antarctica. Notes for events after Sep. 19 will be given in a future issue. 1

$\begin{aligned} & 1997 \\ & \text { Date } \end{aligned}$	Occulting Object	North Amer.	Other IOTA	RAON	$\begin{aligned} & \text { IOTA } \\ & \text { /ES } \end{aligned}$
May 12	Rosa	\mathbf{x}			
June 2	Pallas		x		
June 9	Polonia				x
June 10	Maria	\mathbf{x}			
June 14	Arachne			\mathbf{x}	
June 17	Alsatia				\mathbf{x}
June 26	Rosalia				\mathbf{x}
June 27	Eunomia		x	\mathbf{x}	
June 30	Sylvia		x		
June 30	Tercidina		x	x	
July 9	Lotis			x	x
July 13	Priska			\mathbf{x}	
July 15	Psyche			\mathbf{x}	
July 17	1994 JR1	\mathbf{x}			
July 18	Bardwell				x
July 21	Metis	\mathbf{x}			
July 24	Ophelia			x	
July 25	Sappho	\mathbf{x}			
July 25	Iris		x		
July 27	Pales		\mathbf{x}		
Aug. 4	Pallas	x			
Ang. 6	Roberta	\mathbf{x}			
Aug. 8	Bavaria				x
Aug. 12	Fortuna		\mathbf{x}	\times	\mathbf{x}
Aug. 13	Alauda		x	\mathbf{x}	
Aug. 14	Diotima	x			
Aug. 19	Lanzia		x	\mathbf{x}	
Aug. 19	Sylvia		\mathbf{x}	\mathbf{x}	x
Aug. 22	Marconia				x
Aug. 27	Zelima			\mathbf{x}	
Sep. 2	Donnera				\mathbf{x}
Sep. 3	Mathilde		x	x	
Sep. 4	Rusthawelia			\mathbf{x}	x
Sep. 6	Cora				x
Sep. 13	Rosalia			x	\mathbf{x}
Sep. 16	Repsolda	x			
Sep. 18	Euterpe		\mathbf{x}	x	\mathbf{x}
Sep. 18	Herculina	x			
Sep. 19	Merapi	\mathbf{x}			

Table 1. Occultations of stars by major and minor planets during 1997 June - December, and 2 earlier occultations

Table 2. Occultations of stars by major and minor planets during 1997 June - December, and 2 earlier events

Table 1. Occultations of stars by major and minor planets during 1997 (continued)

Table 2. Occultations of stars by major and minor planets during 1997 (continued)

Table 1. Occultations of stars by major and minor planets during 1997 (continued)

Table 2. Occultations of stars by major and minor planets during 1997 (continued)

Table 1. Occultations of stars by major and minor planets during 1997 (concluded)

Date		11	$\begin{array}{lll} \text { P I } & A \\ \text { Name } \end{array}$	$\mathbf{N}_{\mathrm{m}}^{\mathbf{E}}$	d,AD	$\begin{gathered} \mathrm{S} \\ \text { SAO } \end{gathered}$	m		$\stackrel{A}{S p}$	R.A	$\stackrel{R}{\text { A. }} \text { (1s }$								Pos	$\begin{aligned} & \text { sible } \\ & \text { 1Lal } \end{aligned}$	$\begin{aligned} & \text { P } \\ & L \end{aligned}$				$\begin{aligned} & \text { SI } \\ & \text { Sun } \end{aligned}$		$\begin{array}{rr} 0 & 0 \\ 1 & 8 \mathrm{Snl} \end{array}$	N_{up}
		m m		v						h																		
No	17	43-80	Lu	12.1	2.067	79984	9.2	T2	28	8	6.5	21	35		36	36	104	30	(Al	Y	, Yuk	n, Ar	Arctic			1153		11
Nov	20* 8	5-37	Galat	12.6	1.675		10.0	K		49	49.8	17	20	2.8	827	7	56	20	-43	0	-93-1	12-1	-147-3	36	135	27	66-	136
Nov	2118	7	MA	1.3	2.000	187145	. 9	ro	018	83	38.8	-24	24		147		6	1	-13	39	-9	41	-4	44	40	133	52-	e
Nov	21*19	7-2	r1	. 2	1.162		. 7			11	11	-9	2	. 5	22	2	33	12	32-5	-55	54-1	17	87	9	120	146	52-	678
Nov	2211	17	Nemaus	12.7	2.826		11.5	c		0	1.6	-15	13	1.5		4	10	30	102	171	118	21	137	26	60	144	46-	ne
No	2220	34	Comacin	14	229		9.2	K0		140	40	-12	29	. 2		7	18	33	-12-39	-39	13-3	33			33	164	42-	e
Nov	23*	39-5	Daphne	12	2.390		0.9			5	55.2	1	54	. 7	721	1	35	19	53	75	-25	31	-81	0	132	60	40	33W
Nov	2413	1	Runike	13.2	3.424		9.6			82	24.0	-10	7	3.6		4	9	30	64	38	74	38	85	40	37	97	27	-
No	2413	18-	He	12	1.764		9.8	G0		39	39.8	26	28	6	610	0	32	31	-114	191	176	351	103	18	143	80	27	175w
Nov	2416	22	Jo	-2.0	5.227		9.9	G0		11	10.8	-17	13		3175		20	2	Eur	. Af	Afri	a, sw	w Asi	ia	73	134	26-	e
No	24*16	21-36	Daphn	12	2.372		11			5	54	1	46	1.2	220	0	34	19	-169	-1 1	149-2	28	87-5		133	78	26	e140E
Nov	2517	57-64	Ect	12	. 957		9.7			225	57.5	-6	22	2.9		6	25	47	-5	33	27	43	71	54	100	150	18-	e
Nov	26*	28-35	Fides	10	1.256		10.4	G0	2	2	25	8	21	0.6	617	7	34	16	(Yu)	, A	Alber	rta)) ? 3		157	156	16	e
Nov	2715	38	Felic	13.8	2.433	164357	9.1	F2	21	212	20.6	-18	30	4.7		4	12	39	easte	arn	Europ	pe?s			72	101	$6-$	e
No	2812	15	Chaldae	14.3	2.704	164672	9.5	K2		21	46.3	-11	14	4.8		5	16	39	85	161	113	221	145	30	79	98	3-	e
No	29	44-46	Ve	-4	0.494	188326	6.0	A3		193	33.	-24	50		1065		12	1	16	-21 1	178-1	-1	-16	-6	45	54		e
No	2911	0	NEPTUNE	8.03	30.762	188797	8.9	к0		195	56.8	-20	21		2022		44	1	Q.As	, In	Indon	A	-		51	58	$1-$	e
No	29*18	49-	Thalia	9.5	1.202	77068	9.8	G0	05	1	13	25	21	6	612	2	24	16	155	2	86	39	-11	36	167	162	$0-$	e
De	13	51	Huen	14.1	2.642		9.4	K5	21	21	33	-14	17	. 7		3	11	40	-153	28-1	-133	36-1	-106	47	73	60	$1+$	W
De	20	26-4	Neop	16	4.278		9.4			4	43.5	-7	55	7.1		8	38	73	28	-4	-37	14-1	-116	52	129	109		98W
Dec	2	11	Catriona	13.1	1.414	26053	8.7	A0			53	50	4	4.		6	35	51	-28	-29	-69	27-1	-150	18	140	148	$5+$	ne
Dec	2*	51-74	Euryno	9.8	1.017	28	7.5	GO	0	2	23.3	15	25	2.4		9	27	22	7	14-1	-141-1	161			173	149		160E
D	37	22-31	D	14.5	2.358		10.8	G0	10	102	28.2	26	57	3.7				AK	-10w	(nwz	NLAm	r, Sv	Svald			131		ne
Dec	3*22	58	Herculi	11	3.603	189113	9.0	K2	220	201	15.1	-26	23	2.8		6	11	24	-81	31	-74	35	-65	40	49	10	$16+$	11
Dec	4*12	7-2	Artemis	13.1	1.929	134036	6.0	B9	9	5	58.0	-8	20	7.1	111	1	24	23	-81	47-1	-158	41	120-2	21	135	147	21+	145E
Dec	4*14	12	Galatea	12	. 601		9.9			4	41	17	0	2.6	1	4	28	19	-118	361	159	40	8	22	151	152	22+	08
Dec	5* 3	40-58	Aurora	11.9	1.988		11.6			6	7.6	35	8	9	19	9	25	14	24		-46	34-1	-126	14	158	134	27+	92w
D	7* 8	31-4	Dembows	9.7	1.790	98	8.6	A3	34	2	22.1	29	41	1.4	12	2	22	18	-60	-2-1	-135	20	145	-2	170	83	51+	130w
Dec	8* 2	23	Be	12	2.445		9.8			225	59.8	-26	14	2.7		7	13	19	-127	23-1	-118	35-1	-106	51	81	27	60+	11
Dec	20	14-26	Hygiea	10.3	2.499		1.9			5	9.0	25	13	0.2	228	8	20	8	149	40	48	54	-34	24	177	71	$68+$	68
Dec	19	10	Aukesta	12	904		10.5	G		7	2	18	17	2.0		8	27	35	13	-27	85-2	22	32	32	152	84	78+	101E
Dec	1011	12-20	VENOS	-4.2	0.416		9.8			20	.	-22	28		1739		18	1	Aus	alia	ia,	done	nes		1	92	84+	11
Dec	10*17	26-35	Daphne	12.0	2.218		11.0			4	45.3	0	50		15	5	23	18	159-30	-30 1	114-				148	68	$86+$	135z
Deo	1213	21-	Lucina	13.6	. 5		9.6			0	9.	-13	34	4.0		9	22	27		-11	104	18	139	46	7	63	97+	all
Dec	12*19	6-17	H	14.9	4.473	368	8.7		52	1	11	34	23	6.2		0	35	28	170	61		74	-27	32	138	32	$98+$	all
Dec	1322	42-5	Tha	9.	1.166		10.7			5	57	26	34	0.2	12	2	22	15	114	46	91	72-1	-140	75	173	9	100+	11
Deo	1410	3	Hi	14.3	. 132		9.5			122	24.6	-9	8	. 8		7	17	34	-120	27	-94	18	-68	5	73	103	100-	all
Dec	15	34	C	9.1	3.061		11.8			225	51.4	-18	18	0.1		39	14	5	(se	Alask	ska	Yuko	kon) ? ${ }^{\text {a }}$		75	116	99-	e
Dec	1513	26-34	Ostanina	15.8	2.942	116054	6.3	M4	47	4	49.5	3	24	5		4	28	95	-143-	-41 1	169-	46	115-5	51	141	22	97-	$a 11$
Dea	171	6-23	Brunhild	12.4	1.489		9.0			3	39.8	26	6	3.4		7	33	44	97	59	-16	73	-96	48	152	11	90-	- 93w
Dea	19	31-4	Hygiea	10	2.506		11.2			5	0.2	24	53		429	29	21	8	77	42	-21	6-1	-102	29	170	69	76-	54W
Dec	2018	58-62	venos	-4.3	0.352		9.0	G0	020	201	19.7	-20	2		3819		37	1	-3	-5	0	0	7	4	34	137	61-	none
Dea	21	35-46	inok	13.4	2.005		9.9	K2	24	2	25.0	15	3	3.5		7	20	29		-36	-26-1	18	-85-1	13	158	102	58-	- 17W
Dec	21	11-	Belisana	12	1.586		13.3			3	38.6	25	9	0.5		3	21	62	-27	20-1	-108	41	162	22	176	87	56-	19W
Dec	22	15-18	Kalypso	13.7	2.370		11.4	G		12	48.1	-2	48	2.4		5	13	29	-115	0	-90	-3	-65-1	10	78	7	46-	all
Dec	2223	49-59	Santa	16.5	2.381	91945	7.4	K0	0	0	29.1	12	38	9.1		3	25	89	-90	23	-44	25	2	18	101	169	40-	none
Dec	25* 1	14-65	venos	-4.3	0.329		9.5	G0	020	20	21.6	-19	2		5401		50	1	-73	40-	114	17-1	-109	23	31	86	22-	none
Dec	2518	19-38	Brunhild	12.1	1.452		10.9	K5	5	3	32.4	26	5	1.5		5	26	43	179	36	93	51	10	28	162	115	16-	e1398
De	26	59-68	Kolga	13.2	1.821	112393	9.5	K0	0	5	2.0	5	39	3.7		5	25	52	-86	50-1	-143	63	114	73	155	156	12-	one
Dec	27*	39-54	Nipponia	13.1	1.455	111845	5.5	B3	3	2	25.9	1	16	7.5		4	26	57	-44	12	-90	37-1	-130	85	144	165		none
Dec	27*15	28-43	Germania	12.2	2.203		9.	A		71	14.4	20	30	2.4	412	2	22	19	-143	161	137	31	541	14	168	142	5-	Q161w

Table 3. Stars with Significant Angular Diameters

$\begin{aligned} & 1997 \\ & \text { Date } \end{aligned}$		PLANET No. Name		$\begin{gathered} \text { STAR } \\ \text { SAO/DM/ID } \end{gathered}$		Stterat diameter					
		m/				tim	df				
Jun	2			2	Pallas	162	41421	0.39	798	78	2.4
Jun	10	170	Maria		164249	0.96	1394	356	5.0		
Aug	6	335	Raberta		128727	0.14	141	60	0.6		
Sep	3	29	Amphitrite		158462	0.91	2079	64	5.9		
Sep	16	906	Repsolda		76505 J	0.25	426	55	1.4		
Sep	30	13	Egeria		183040 F	1.41	3434	86	9.5		
Oat	2	253	Mathilde	066	40977	0.19	194	52	0.8		
Oat	22	10	Hygiea	186	52411	0.09	19	79	0.6		
Nov	1	41	Daphne	016	62183	0.24	464	58	1.4		
Nov	2	2	Pall		124651	0.95	2421	90	. 5		
Nov	17	21	Lutetia		79984	0.10	154	57	0.5		
Nov	20	74	latea	L1	1884	0.22	264	58	1.0		
coc	15	1369	Ostanina		116054	2.44	5198	437	15		

Table 2. Occultations of stars by major and minor planets during 1997 (conaluded)

International Occultation Timing Association, Inc. (IOTA)

International Occultation Timing Association, Inc. (IOTA)

IOTA Occultation Predictions
David W. Dunham

A11 IOTA members who want them should now have 1997 predictions of lunar grazing and total occultations for their region, and local circumstance appulse predictions for planetary and asteroidal occultations. If that is not the case, contact the graze computor given for your region listed on p .8 of the 1997 Grazing Occultation Supplement for your hemisphere, or IOTA or IOTA/ES, or me. In that list, the telephone number for Henk Bulder is incorrect; it should be $31,1722,11870$. Also, the e-mail address for Andrew Elliott in the U.K. has been simplified to aje@compuserve.com.

The graze computors will try to supply you with the updated predictions described below usually only if you can receive the prediction files in a zipped, attached file, as described on p. 9 of the 1997 graze supplement. However, they will supply them upon request in files on an IBM-compatible diskette if you can not easily receive attached files by email, and they will be printed if you do not have free access to a PC and printer.

A few more graze computors are needed to help compute all IOTA predictions for some areas; part of the problem with distribution of this year's predictions has been too much work being done by too few people. Especially needed is help with the predictions for western North America. If you are interested in helping, have an IBM-compatible PC with math co-processor, and can receive relatively large attached files by e-mail, please contact me. The graze computors now also generate and distribute predictions of total lunar occultations, and of local data for appulses by major and minor planets, as well as of lunar grazing occultations.
Total lunar occultations: By the time you receive this, I will have distributed to all of the graze computors a small computer program called IOTASTA that creates a file in the sites.dat format needed by the OCCULT program from the file of stations that is used by the GRAZEREG graze prediction program. This will make it easy for the graze computors to generate total lunar occultation predictions for all IOTA members with OCCULT. However, the GRAZEREG station file does not include the telescope aperture needed by OCCULT, so if you want your OCCULT total occultation predictions to use an aperture other than the default value of 20 cm , send the value you want used to your graze computor. The OCCULT predictions include lunar occultations of major and minor planets that are no longer included in the PCEvans predictions. If you already have the latter, which have stellar data that is at least as comprehensive as that which can be generated by OCCULT, your computor may send you OCCULT data only for the lunar occultations of the planets. I have not had a chance to complete a program to convert the PC-Evans station and observer information files to the OCCULT sites.dat format, but with the IOTASTA program, that might not be necessary. It is certainly more efficient for the computors to work with only one station file, the GRAZEREG station file (a change to that file that we hope to make will be to include the observer's telescope aperture in cm , probably in place of the currently unused
spectacular travel radius). So for 1998, we may stop using both PC-Evans and its associated station and observer files. In order to efficiently generate the .zip files for e-mail transmission of all predictions, the OCCULT-produced prediction file will have a name such as brocc022.997, which would be a code for B-region OCCULT data for station 22 (number in the IOTA station deck for the region) for 1997. "Brocc022" would also be the first 8 characters of the name of the location given in the OCCULT prediction heading, followed by the first several characters (but usually not all of them) of your actual location (usually city) name. Grazing occultations: Basic information is included in the hemispheric grazing occultation supplement distributed with the last issue. The latest version of the ACLPPP program now (as of the start of May) lists at the top of each profile "IOTA 1997 MAR. 9 ACLPPP WITH 1997 MAR. 14 OBSERVED GRAZE DATA". Previous versions of the program only identified the month that it was created, and only starting with the March version is the date of the observed graze dataset also identified, important now that we are adding observed graze data to correct various errors. In general, we will not provide updated ACLPPP profiles for 1997, unless it is relatively easy to do so as part of a prediction update distribution for other reasons, such as described in the sections above and below. So at least if you can receive attached files by e-mail, you should have by now been provided with a new file of ACLPPP profiles with the above dates given at the top, and possibly with a later version of the observed graze data. If you can not receive attached files by e-mail, you will be supplied by your computor a new file of ACLPPP profiles upon request if you plan an expedition for a graze under one of the following circumstances:

If the ACLPPP observed dataset is earlier than 1997 May (or no date is given at the top for the observed data), "ZC 1821 $05 / 25 / 80$ " is one of the observed grazes listed at the bottom, and the graze profile includes the Watts angle range 180.0 to 180.8 , then a new profile is needed, or you should ignore the "mountain" that appears in the described Watts angle range. The observations on which this was based are about 1.15 too high and will be removed from the observed graze dataset for predictions computed in May and later.

If the ACLPPP version is earlier than 1997 MAR. 9 and you plan to observe a graze of ZC 1029 (26 Geminorum), then you need a new profile. Only the 1997 MAR. 9 and later versions take into account the significant known error in the declination of this star (previous grazes show that it is about $0 ״ 3$ south of its catalog position, so that the graze shadows computed with the earlier versions are about 0.5 km too far south). Also, if your version is earlier than Mar. 9 and ZC 1029 is one of the stars listed for used observed grazes at the bottom (for a graze of any star), then you also need a new profile.

If the ACLPPP observed dataset is earlier than 1997 MAR. 14 (or no date is given at the top for the observed data), "ZC $97005 / 01 / 79$ " is one of the observed grazes listed at the bottom, and the graze profile includes Watts angle 183.4 and 183.6, the profile at those points will be plotted about 1.0 too high. This erroneous dataset has been removed from the Mar. 14 version of the dataset.

International Occultation Timing Association, Inc. (IOTA)

If the ACLPPP version is earlier than 1997 MAR., then you should make the correction for southern Cassini-region waning-phase grazes mentioned in the lower left side of $p .9$ of the 1997 graze supplement, and you should ignore a "mountain" around Watts angle 182-183, especially when observed data for a graze of ZC 2072 are listed at the bottom (that is, the "mountain" in that area is too high by almost $1^{\prime \prime}$). These problems have been taken care of if observed data are listed at the bottom for "ZC 2771 $02 / 02 / 97$ " or "ZC $277152 / 02 / 97$ ". This is the θ Librae graze observed in Europe, and for which a new profile by Henk Bulder is printed on page 377. This dataset will be updated to include the more detailed information of that profile in the 1997 May update to the observed graze dataset.

Observers are reminded that the UTC time, and the longitude and latitude given at the bottom of each ACLPPP profile are for a standard point in the predicted limit used to compute the basic profile information, and not for the point in the predicted limit closest to their location. The standard point is often many degrees of longitude west of the closest point for the observer. However, the important thing is that the profile has been adjusted to the Watts and position angles of central graze for the closest point to the observer, so it is valid for his region, in spite of the location and time information given. The position angles of central graze never differ by more than 1° from the standard point to the closest point. The standard point is generally used for many observers until the central graze P.A. difference exceeds 1°, then a new standard point is computed. In a future version of the program, either the coordinates and/or time for the standard point will be labeled as such, or just eliminated to avoid confusion.
Local circumstance appulses: By the time you receive this, your graze computor will have been sent a final version of the 1997 input dataset of occultations of stars by major and minor planets. They now include SAO numbers whenever these are available for the star, and predictions of the separate components of double stars are now given. Also, improved data for some stars have been used; see the separate article by Edwin Goffin and myself about 1997 predictions of asteroidal and planetary occultations. Even when there are no new updates for the star or asteroid, there may be a small change in the prediction since the formula for $\Delta \mathrm{T}$ used by the program has been updated.
Errors in XZ94E: Some errors in XZ94E star designations were corrected in PC-Evans total occultation predictions distributed in February 1997 or later, as mentioned on $\mathbf{p} .311$ of the last issue. The errors may exist in PC-Evans predictions computed before then (but I found that none of the stars in question actually were occulted at my location near latitude $+39^{\circ}$ during 1997), as well as other programs that use XZ94E, including GRAZEREG graze predictions and OCCULT version 4.0 and higher versions. Only a few stars are involved. The corrections can be found on IOTA's "sky.net" web site and will be published in the next issue. 1

More Web Sites for IOTA
David W. Dunham

Many valuable web sites were listed on pages 339-341 of the last issue. An important site that Kevin Krisciunas told me about recently is the U.S.A. mapping site http://www.etakguide.com/\#FindLocation which will generate a detailed map given any address or street intersection in the country. But most important for IOTA, it will also give a rather accurate longitude and latitude for the address, or for any point on which a cursor arrow is set on the detailed map. Our tests of these coordinates show that they are accurate to about $2^{\prime \prime}$, not accurate enough for reporting lunar occultation timings, but good enough for reporting asteroidal occultations, and for all predictions. Residents of the U.S.A. should enter their address to check their map measurements. I was surprised to discover with this site that the longitude for my observing location in Silver Spring, MD, where I lived from 1977 to 1988, was in error by $12^{\prime \prime}$. A remeasurement of the 1:24,000-scale U.S. Geological Survey map of the area confirmed the Etak position within $1^{\prime \prime}$. That sold me on this site's value. Also, the database seems to be very up-to-date, including streets in my neighborhood that were laid out only 3 years ago. One drawback to the site is that it does not give height above sea level, so you still need the detailed topographic map for that, as well as for measuring coordinates accurate enough (to the nearest $1^{\prime \prime}$, that is, within ± 0.5, of longitude and latitude) for reporting lunar occultation timings. There is a good discussion of this site, and of other mapping sites, by Rob Robinson on IOTA's main Web site at http://www.sky.net/~robinson/iotandx.htm. The Etak coordinates might be more accurate than $2^{\prime \prime}$ if they are on the WGS 84 (GPS) system, or perhaps on the 1983 North American Datum; that could explain the differences that we get from measuring the maps to give positions on the 1927 North American Datum. An inquiry to Etak when we get a chance might resolve this. If anyone knows of any sites like this for other countries, please let me know and I will share that in a future $O N$.

Not mentioned last time was another IOTA site, Robert Sandy's site at http://www.sky.net/~grazebob/index.html which includes many reduction profiles of grazing occultations, as well as other useful prediction and observing information. It also has an image of one of the best photos ever made of an occultation, taken by Bob of the 1978 Dec. 26 occultation of Venus by the 14% sunlit waning Moon. It is directly linked to from the main IOTA site maintained by Rob Robinson, which is why I did not include it in the article in the last issue. It does have one important item that is NOT linked to anything else, and hence is available only to $O N$ readers--replace "index.html" in the URL above with "occman.zip" and you have the downloadable .zip file containing an ASCII version of IOTA's draft observing manual, as noted in $O N($ vol. 6, no. 13, pg. 278, January, 1997).

There is a link to Fred Espenak's eclipse (mainly solar) web site from the main IOTA web site. Fred has recently completed a new web site for the total solar eclipse of 1999 August 11. The URL is: http://planets.gsfc.nasa.gov/eclipse/ TSE1999/TSE1999.html. This eclipse path passes through

Europe, the Middle East and India. The site includes many maps, tables, weather prospects, and other information. There are also instructions for ordering the new NASA bulletin on this eclipse. The URL for Fred's main eclipse site is: http://planets.gsfc.nasa.gov/eclipse/eclipse.html.

Ovidiu Vaduvescu informs us of a web page about the 1999 solar eclipse in Romania: http://roastro.astro.ro. The central line crosses Bucharest.

The last issue incorrectly listed the URL for the AAO Lunar Occultations Homepage. The correct URL is http://www.arcetri.asto.it/~luna/index.html. 1

Recently Observed Asteroidal Occultations David W. Dunham

TThis gives very preliminary information about some asteroidal occultations that have been reported to me since I wrote "Recent Results from Asteroidal Occultations" in $O N$ (vol. 6, no. 13, pg. 300). Jim Stamm will publish more complete information about them later. The observations indicate in general that the nominal predictions for occultations of PPM stars are pretty good, much better than the 1.0 error bars that we commonly give the predictions. These events usually seem to be within 0.2 to 0.3 of the prediction so that chances of seeing an event at distances greater than 0.15 from the nominal path seem to be quite small. But observers within this distance have a better chance of seeing the event, and are encouraged to monitor these events, even when there is conflicting CCD astrometry. However, the nominal predictions aren't yet accurate enough for portable observers to travel into the paths and have a high (more than 50\%) chance of seeing the event. There is good hope of that happening after orbits for the asteroids are redetermined using Hipparcos data, and those data are also used for the stars. The Hipparcos data are due to be released in June, so improvements in the predictions can be expected later this year.
1996 Dec. 17, (704) Interamnia and B.D. $+33^{\circ} 633$: Timings of this event have been reported from 9 stations in southern California, Arizona, and New Mexico. An ellipse with dimensions 337 km and 321 km can be fit to these chords. A plot and some details are given on IOTA's asteroidal occultation web site. In addition, timings were made by four stations from Lowell Observatory. The path of the occultation was predicted almost exactly (s. limit within about 0 ". 01) by Martin Federspiel from extensive observations made with the Carlsberg Automated Meridian Circle (CAMC) on La Palma in the Canary Islands. Some observers were misled by astrometry from the Flagstaff (USNO) transit circle that gave a path $3 / 4$ path-widths farther south, so few observations were obtained across the northern half of the asteroid, and none in the northern third of the path. Three "last-second" CCD astrometric predictions gave conflicting results. After the event, Jan Manek re-reduced his measurements using GSC 1.2 data, and that gave a good result, within about 0 ". 06 of the truth. That showed that GSC 1.2 data, available from the Web (see p. 340 of the last issue) are really needed for effective CCD
astrometry; the more widely used GSC 1.1 data are just not accurate enough.
1997 Jan. 6, (363) Padua and SAO 77818: A 3-second occultation was timed by Jose Gomez Castano at Fuenlabrada, near Madrid, Spain. He was near the northern limit since Jose Ripero Osorio, about 20 km to the north at Torrejon, had a miss. The event occurred within a path width (0.07) of my prediction using Jim Roe's GSC 1.2 astrometry obtained the night before with his 20 cm telescope at Oaxaca, Mexico. This confirmed the value of GSC 1.2. The actual path was also well within a path width of the nominal prediction.
Jan. 22, (50) Virginia and PPM 156720: A 1.5 -second occultation was video recorded by Leszek Bendedyktowicz at Cracow Observatory, Poland. This was near Federspiel's path update based on CAMC data for the asteroid only; the prediction remained uncertain due to a lack of observations of the star. The event was very short relative to the expected 9 seconds for a central event, and the observer reported "strong oscillation" 15 seconds after the reappearance. Also, Rui Goncalves near Lisbon, Portugal, saw no occultation, but obtained CCD images before and after the event, showing that the path passed $0 " 11$ north of his position, in better agreement with the nominal prediction but far from Cracow. There have been no confirming observations; the short Cracow event might have been a secondary extinction rather than one by Virginia itself.
Feb. 4, (84) Klio and PPM 91967: A certain occultation was timed by Orlouf Mitskogen near Oslo, Norway, less than 0 ". 2 south of the nominal prediction. Rui Goncalves obtained CCD astrometry at Lisbon and calculated that the path was 1.5 ± 0.12 north of his site; the Oslo observation shows that the distance at Lisbon was really $1 " 7$ to $1 " 8$.
Feb. 26, (386) Siegena and PPM 153989: Jan Manek timed the disappearance at Stefanik Observatory in Prague, Czech Republic, but clouds moved in 4 seconds later, preventing a timing of the reappearance. Jan could usually resolve the star's companion (PPM 153990), about 0.5 mag. fainter and 4.7 away, and at the time of the D , the stars were resolved and only the brighter star disappeared, so he is 95% confident that an occultation by Siegena occurred. The stellar duplicity prevented CAMC astrometry.
1997 March 21, (377) Campania and SAO 138801: Rik Hill and Jim McGaha, observing at separate observatories in Tucson, Arizona, timed the occultation. Their location was about a path width south of the nominal prediction. Observers east of downtown Phoenix had a miss. The path must have passed over the western half of Phoenix, but nobody observed there. Some observers were misled by CCD astrometry that indicated the path would be a few path widths southwest, along the southern California coast, where no occultation was seen. 1

Venus and Jupiter Double Occultation Isao Sato
satoois@cc.nao.ac.jp

Dear colleagues: A very interesting event, simultaneous lunar occultations of Venus and Jupiter, will be seen from the southern part of the Atlantic Ocean near dawn on April 23, 1998. The event will be seen in the daylight from the southern part of Africa. The best site to see it from is the Ascension Islands (belonging to the UK) in the south Atlantic Ocean. The Venus occultation is nearly a northern graze and it occurs at almost the same time as when Jupiter reappears from the dark limb at 6 h 10 m UTC. It should be a wonderful sight!

Successive lunar occultations of Saturn and Vesta will be seen from the north part of Japan in 2002. 1

PHEMU97: First Observation by IOTA/ES
 Wolfgang Beisker beisker@gsf.de

For the PHEMU97 campaign IOTA/ES observed the first event for this year observable from Munich with the IOTA Occultation Camera (IOC) this morning at 3 h 56 m UTC. J 4 occulted J2. The elevation of Jupiter was around 17 degrees, the sun was only -2 degrees below the horizon. An RG850nm longpath filter was used to sufficiently suppress the sky background. An 11 inch Schmidt-Cassegrain telescope with $\mathrm{f} / 10$ was used. Exposure time was 0.4 seconds, the image interval time was 0.714 seconds. 1500 images were taken.

All IOTA/ES members are reminded of the PHEMU97 campaign announced by Dr. J. E. Arlot of the BDL (arlot@bdl.fr). In order to get more information, contact the BDL WWW pages at www.bdl.fr . Information is also available by snail-mail from IOTA/ES. [Also, see Arlot and Wilds' article about these events on pages 325-333 of the previous issue]. Good luck with further observations. 1

1997 July 18 Triton Occultation
 Larry Wasserman
 lhw@lowell.edu

Due to the very slow motion and small angular size, occultations of stars brighter than Triton by that satellite of Neptune are rare. One will occur on July 18, and professional astronomers are mobilizing to record it, to learn more about Triton's tenuous atmosphere that was discovered by Voyager 2. My latest predicted path, based upon CCD observations by Lowell Observatory's Ted Dunham made at Perth Observatory, shows that the occultation path starts in southern Texas and Mexico at 10:13 UTC, then crosses the central Pacific Ocean, then clips the northern part of North Island, New Zealand at $10: 19$, and includes most of Australia at $10: 20$. The $13.0-\mathrm{mag}$. star is at J2000 R.A. 20 h 2 m 51.3 s , Dec. $-20^{\circ} 0^{\prime} 57^{\prime \prime}$. Triton will be just
a few tenths of a magnitude fainter, so the total magnitude drop will be about 1.0. A central event should last 118 seconds. Neptune is near opposition (solar elongation 177°) and the Moon is nearly full (96% sunlit) and 26° away from the 8 -mag. planet, which will be only a few areseconds from the star and Triton. These are challenging circumstances, but suitably equipped observers are invited to attempt observations. Wolfgang Beisker estimates that observations will be marginal with his IOTA occultation CCD camera system with an 11-inch telescope, so 14 inch or larger telescopes are recommended. Since there is still some uncertainty in the prediction, observers in the southwestern U.S.A. and New Zealand, in addition to those throughout Mexico and Australia, are encouraged to attempt observations. A map showing the latest path can be viewed on IOTA's asteroidal occultation web site at URL http://www.anomalies.com/iota/splash.htm. A finder chart for Neptune is also available there. I

1997 February 02 Mainz Graze Results Henk Bulder
 HJJBulder@compuserve.com

Here is the profile containing the data of the 1997 February 02 Mainz graze expedition, which I received form Hans Ehrenberg, combined with the Urmond (Maasband) expedition. The observations agree very well. The Mainz expedition gives a lot of additional datapoints. Only 3 of the 16 observers recorded a miss and one had technical problems preventing timings. After skipping some spurious timings made at the bright limb with small instruments, 62 timings remain including 27 coming from a video record which shows many gradual and step events, confirming the suspected duplicity reported in the Urmond (Maasband) expedition. The coordinates for the Mainz expedition are in Potsdam Datum. I didn't correct for European Datum in the graph, since I don't know how to do that. I expect the resulting differences would be very small, though. [The profile is on the following page.] :

An Analysis of Observations of the Z.C. 1029 Graze on 1996 Oct. 4
Robert L. Sandy
grazebob@sky.net

On 4 October, 1996, seventeen observers from across the USA, from Arizona to Massachusetts, were successful (estimated at $90 \%+$) in observing the northern limit graze of +5.1 -mag. suspected double star 26 Geminorum. With much time spent in correspondence with expedition leaders beforehand, the writer's Pictorial Reduction (henceforth known as P.R.) was completed on 12/02/1996, and snail-mailed to some of the observers. Of the seventeen observers who observed the graze, only fourteen were plotted on the P.R. for the reasons that (1) three (including Stamm) of the four observers in J. Stamm's expedition observed a miss, Stamm's star plot being the only one shown on the P.R.; and (2) another observer in Stamm's team was running late getting to the graze limit, and therefore set up about six miles (pretty deep into the moon) perpendicular south of the limit, and observed just one D and R, so his observations were not plotted. Of the fourteen observers tracks plotted, a total of 50 timings were plotted, a good 92% of them being considered excellent in accuracy and of non-questionable quality! Considering that the star was lost by some of the observers against the moon's bright features at the initial onset of the graze, I think everyone got very good data during the early morning hours and on a work-day morning.

In past-times, the writer has been plotting on my P.R.'s the pre-predicted profile using the same profile datum from I.O.T.A.'s ACLPPP, but in this case I have plotted the predicted profile based on very detailed/observed data from two observed grazes (of my choosing) that I have in my files, and for which I have drawn P.R.'s. Thus, the data from 359.2 to 358.0 degrees were derived from the observed graze of Z.C. 667 on $9 / 22 / 1978$, when 6 observers made 10 timings in this Watts Angle region (the other six timings, for a total of 16 , were made in the W.A. range of 354.6 to 353.1), and when $L=+6.0$ and $B=+7.1$, a very good choice since the B (latitude libration) was +7.3 for the subject graze. Then from 355.1 to 352.2 degrees W.A., data from the graze of Z.C. 692 (Aldebaran) on 9/12/1979 were used, when 16 observers made a total of 68 timings all the way from W.A. 355.1 to 348.0 degrees, and when $\mathrm{L}=+8.3$ and $\mathrm{B}=+7.3$; again a good choice since the B (lat. lib.) was exactly the same as for subject graze. It is also good that the Longitude Libration (L) value/s for both chosen data grazes had the same sign and were fairly close (in value) to the subject graze L-value. Special Note: As noted on one of the P.R. captions (upper right corner), the faint predicted profile area from 357.8 to 355.6 -degrees W.A. (Code $7 \& 4$) should not be considered very accurate; this part of my plotted profile was taken straight off of the pre-graze ACLPPP, since I had no good past-observed profile data in my files for this Watts Angle range. Keep in mind that the error bars for Codes 7 \& 4's are very long (see $O N$ vol. 6, no. 13, pages 304-305 (January. 1997) for the definitions of Codes 7 \& 4).

Now, before the Subject plotted predicted profile (shown faintly on P.R.--but not so faint on the copy here so that it would print) could have any meaning at all in relation to the Z.C. 1029 observations, the vertical baseline for both Z.C. 667 and Z.C. 692 had to be related to the same Grazing Elements Computer Version (i.e., 85-E) base line as that for the subject Z.C. 1029 graze. This matching was accomplished by asking Dr. Soma to run $85-\mathrm{E}$ Grazing Elements for some of the observers in the ZC 667 and ZC 692 expeditions, since both the grazes of 667 and 692 were based on an entirely different Computer Version when this writer/P.R. plotter originally drew the data P.R.'s. for 667 and 692.

Summary: Although several observers were unable to get a good timing of their first star disappearance (due to the star making contact with bright limb features at the beginning of the graze period), many good timings were made from then on, as stated in paragraph \#1. Therefore, several conclusions can be made, namely (1) the somewhat incoherent timings made by observers JW (he did make a slight late D-timing just a few sec. later than the AT shown on the P.R.), DR, MR, PB, EH, and JH agree partially with the predicted profile plotted in the W.A. region from 358.6 to 358.0 -deg.; (2) observer DG's observations starting at 357.6 to 356.0 -deg. definitely define the true limb profile (it has been this writers' opinion, for quite sometime, that IOTA's ACLPPP limb datums 4's and 7's have been too low in relation to the moon's mean limb/0.0"); (3) from W.A. 356.0 through 352.2 -deg., the reported observation agree pretty well with the predicted (faint) profile, except where I (i.e., RSY) reported events quite a bit higher in the W.A. range between 353.0 to 352.4 . It's this writer's (RSY) opinion that the deviation here is mainly caused by three factors, (1) the lunar libration L-value between that for subject vs. Z.C. 692 was a difference of 4.6-degrees, enough of a difference to (probably) cause this deviation This same deviation would also apply to other observer's observations from 356.0 through 353.0, except that the deviation seems to (at some W.A.'s, like between 356.0 to 355.0) be a little less extensive. The other factor (\#2) is the Probable Error In Star Declination (P.E.I.S.D.) differences between that for subject graze star vs. that for Z.C. 692 (Aldebaran); as we know, usually the brighter the star, the greater the accuracy of its position in the sky!! Now (\#3) since subject star was a double star, with equal $5.9-\mathrm{mag}$. components at a predicted separation of 0.05 ", the fact that the star is double usually causes its position in the sky to not be as accurate as with single stars of the same magnitude (although this is usually the case with double-star components of quite unequal magnitudes and a greater separation between them than just 0.05 "). Prior to Subject graze, the Heading of this writer's IOTA Limit Predictions GRAZEREG-VER. 4.0 BY IOTA/ES, E.RIEDEL, AND J.H.SENNE showed a Probable Error for ZC $1029= \pm 0.10^{\prime \prime}$, but recent information from Dr. Soma (Japan) indicates that it is really $\pm 0.28^{\prime \prime}$. So in my P.R. Heading, the P.E.I.S.D. should be changed to read $\pm 0.28^{\prime \prime}$. 1

International Occultation Timing Association, Inc. (IOTA)

IOTA's Mission

The International Occultation Timing Association, Inc. was established to encourage and facilitate the observation of occultations and eclipses. It provides predictions for grazing occultations of stars by the Moon and predictions for occultations of stars by asteroids and planets, information on observing equipment and techniques, and reports to the members of observations made.

The Offices and Officers of IOTA

IOTA Online--Timely Updates

The Occultation Information Line at 301-474-4945 is maintained by David and Joan Dunham. Messages may also be left at that number. When updates become available for asteroidal occultations in the central USA, the information can also be obtained from either 708-2592376 (Chicago, IL) or 713-480-9878 (Houston, TX). The IOTA WWW Home Pages are at http://www.sky.net/~robinson/iotandx.htm for Lunar Occultations and Eclipses--maintained by Walter L. "Rob" Robinson--and http://www.anomalies.com/iota/splash.htm for Asteroidal Occultations--maintained by Jim Hart.

IOTA European Service (IOTA/ES)

Observers from Europe and the British Isles should join IOTA/ES, sending a Eurocheck for DM 40,00 to the account IOTA/ES; BartoldŚnaust Strasse 8; D-30459 Hannover, Germany; Postgiro Hannover 555 829-303; bank-code-number (Bankleitzahl) 25010030. German members should give IOTA/ES an "authorization for collection" or "Einzugs-Ermaechtigung" to their bank account. Please contact the secretary for a blank form. Full membership in IOTA/ES includes the supplement for European observers (total and grazing occultations) and minor planet occultation data, including last-minute predictions, when available. The addresses for IOTA/ES are:

Eberhard Bredner
IOTA/ES Secretary
Ginsterweg 14
D-59229 Ahlen 4 (Dolberg)
Germany
Phone: 49-2388-3658 (in Germany 0-2388-3658)
Fax: 49-2381-36770 (in Germany 0-2381-36770)

Hans-Joachim Bode
IOTA/ES Section President
Bartold-Knaust-Str. 8
D-30459 Hannover 91
Germany
Phone: 49-511-424696 (in Germany 0-511-424696)
Fax: 49-511-233112 (in Germany 0-511-233112)

